• Title/Summary/Keyword: Grid adaptation

Search Result 47, Processing Time 0.027 seconds

A Grid Adaptation Method Using the Chimera and Patched Grid Systems (중첩격자계와 접합격자계를 이용한 적응격자 기법)

  • Kim, De-Hee;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.17-25
    • /
    • 2005
  • A grid adaptation method within systems of chimera and patched grids is presented. Problem domains are divided into near-body and off-body fields. Near-body field is filled with curvilinear body-fitted grids that extend only a short distance from body surfaces and connected to other grid systems via chimera domain connectivity method. Off-body field is filled with patched uniform cartesian grids of varying levels of refinement. This method gives flexibility in grid generation and efficient adaptation capability. Several numerical experiments including 2D store separation were performed to show the performance of the proposed adaptation method.

Numerical Simulation of Shock Wave Reflecting Patterns for Different Flow Conditions

  • Choi, Sung-Yoon;Oh, Se-Jong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.74-85
    • /
    • 2002
  • The numerical experiment has been conducted to investigate the unsteady shock wave reflecting phenomena. The cell-vertex finite-volume, Roe's upwind flux difference splitting method with unstructured grid is implemented to solve unsteady Euler equations. The $4^{th}$-order Runge-Kutta method is applied for time integration. A linear reconstruction of the flux vector using the least-square method is applied to obtain the $2^{nd}$-order accuracy for the spatial derivatives. For a better resolution of the shock wave and slipline, the dynamic grid adaptation technique is adopted. The new concept of grid adaptation technique, which is much simpler than that of conventional techniques, is introduced for the current study. Three error indicators (divergence and curl of velocity, and gradient of density) are used for the grid adaptation procedure. Considering the quality of the solution and the numerical efficiency, the grid adaptation procedure was updated up to $2^{nd}$ level at every 20 time steps. For the convenience of comparison with other experimental and analytical results, the case of interaction between the straight incoming shock wave and a sharp wedge is simulated for various flow conditions. The numerical results show good agreement with other experimental and analytical results, in the shock wave reflecting structure, slipline, and the trajectory of the triple points. Some critical cases show disagreement with the analytical results, but these cases also have been proven to show hysteresis phenomena.

Numerical Analysis for Linear and Nonlinear Attenuation Characteristics of Exhaust Silencer Systems (배기 소음기의 선형 및 비선형 감쇄 특성에 대한 수치해석)

  • 김종태;김용모;맹주성;류명석;구영곤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.179-189
    • /
    • 1996
  • An unstructured grid finite-volume method has been applied to predict the linear and nonlinear attenuation characteristics of the expansion chamber silencer system. In order to achieve a grid flexibility and a solution adaptation for geometrically silencer system. In order to achieve a grid flexibility and a solution adaptation for geometrically complex flow regions associated with the actual silencers, the unstructured mesh algorithm in context with the node-centered finite volume method has been employed. The present numerical model has been validated by comparison with the analytical solutions and the experimental data for the acoustic field of the concentric expansion chamber with and without pulsating flows, as well as the axisymmetric blast flowfield with open end. Effects of the chamber geometry on the nonlinear wave attenuation characteristics is discussed in detail.

  • PDF

LOCALLY ENRICHED QUADTREE GRID NUMERICAL MODEL FOR NEARSHORE CIRCULATION IN THE SURF ZONE

  • Park, Koo-Yong
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.187-197
    • /
    • 2000
  • This paper describes an adaptive quadtree-based 2DH wave-current interaction model which is able to predict wave breaking, shoaling, refraction, diffraction, wave-current interaction, set-up and set-down, mixing processes (turbulent diffusion), bottom frictional effects, and movement of the land-water interface at the shoreline. The wave period-and depth-averaged governing equations are discretised explictly by means of an Adams-Bashforth second-order finite difference technaique on adaptive hierarchical staggered quadtree grids. Grid adaptation is achieved through seeding points distributed according to flow criteria(e.g. local current gradients). Results are presented for nearshore circulation at a sinusoidal beach. Enrichment permits refined modelling of important localised flow features.

  • PDF

A Study on Grid Adaptation by Poisson Equation (푸아송 방정식을 이용한 격자 적응에 대한 연구)

  • 맹주성;문영준;김종태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.182-189
    • /
    • 1993
  • To improve the resolution of complex flow field features, grid adaptation scheme of Anderson has been revised, which was based on the Poisson grid generator of Thompson. Anderson's original scheme adapts the grid to solution automatically, but if flow field is more or less complex, then the adaptivity is weak. So the technique of using threshold which is used in unstructured grid system is adopted. The regions of large variation in the solution are marked by marking function which has the property of total variation of the solution, and these regions have same values of weight but other regions are neglected. This updated method captures shocks clearly and sharpy. Four examples are demonstrated, (1) Hypersonic flow past a blunt body, (2) High speed inlet analysis, (3) Supersonic flow of M=1.4 over a 4% biconvex airfoil in a channel, (4) Hypersonic shock-on-shock interaction at M=8.03.

Shape optimal design of elastic structures by the domain adaptive method (領域適應法을 利용한 彈性體 形狀의 最適設計)

  • 정균양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.234-242
    • /
    • 1987
  • The solution of shape design problems based on variational analysis has been approached by using the domain adaptive method. The objective of the structural shape design is to minimize the weight within a bound on local stress measure, or to minimize the maximum local stress measure within a bound on the weight. A derived optimality condition in both design problems requires that the unit mutual energy has constant value along the design boundary. However, the condition for constant stress on the design boundary was used in computation since the computed mutual energy oscillates severely on the boundary. A two step iteration scheme using domain adaptation was presented as a computational method to slove the example designs of elastic structures. It was also shown that remeshing by grid adaptation was effective to reduce oscillatory behavior on the design boundary.

Multiblock Grid Generation for Turbomachinery Cascade-Flow Analysis (터보기계 익렬유동해석을 위한 다중블록 격자형성법)

  • Chung H. T.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 1996
  • A multiblock grid generation has been developed to be reliably used for a Navier-Stokes simulation of the turbomachinery flow-fields A multiblock structure simplifies the creation of structured H-grids about complex turbomachinery geometries and facilitate the creation of a grid in the tip flow region. The numerical algorithm adopts the combination of the algebraic and elliptic method to create the internal grids efficiently and quickly. The grid refinement process is enhanced by developing strategies to utilized Bezier curves and splines along with weighted transfinite interpolation technique and by formulating the grid-imbedding method for the viscous boundary-layer meshes. For purposes of illustration, the grid generator is applied to the high turning turbine rotor blades. Two different types of computational grids are provided to be compared with respect to the grid adaptation to the flow simulations. Extension to three-dimensions was done to show the possibility of its application to the tip-flow simulations. The grid quality of the multiblock structure is good in the passages, with gloval orthogonality and adequate smoothness.

  • PDF

RANS ANALYSES OF THE TIP VORTEX FLOW OF A MARINE PROPELLER (RANS법을 이용한 선박 프로펠러 날개 끝 보오텍스 유동 해석)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.62-69
    • /
    • 2016
  • It has been highly demanded to improve the accuracy of CFD(Computational Fluid Dynamics) methods for the assessment of the hydrodynamic performance of marine propellers in cavitating and non-cavitating flows. This paper presents a validation study on the numerical simulation of the tip vortex flow of a non-cavitating marine propeller SVA VP1304. The calculations are carried out by using the Reynolds averaged Navier-Stokes(RANS) approach, where the Reynolds Stress Model(RSM) is used for turbulence closure. The present paper contains a grid dependence test for the propeller open water simulations and a special emphasis is placed on conducting a local grid adaptation on the blade tip and in the tip vortex to reasonably reproduce the velocity and the pressure in the tip vortex flow field. The numerical results are compared with the experimental validation data, which are published in the second International Symposium on Marine Propulsors 2011(SMP'11). The present numerical results show a reasonable agreement with the experiments.