• Title/Summary/Keyword: Grid adaptation

Search Result 47, Processing Time 0.027 seconds

Cognitive Beamforming Based Smart Metering for Coexistence with Wireless Local Area Networks

  • Lee, Keonkook;Chae, Chan-Byoung;Sung, Tae-Kyung;Kang, Joonhyuk
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.619-628
    • /
    • 2012
  • The ZigBee network has been considered to monitor electricity usage of home appliances in the smart grid network. ZigBee, however, may suffer from a coexistence problem with wireless local area network (WLAN). In this paper, to resolve the coexistence problem between ZigBee network and WLAN, we propose a new protocol constructing a cognitive smart grid network for supporting monitoring of home appliances. In the proposed protocol, home appliances first estimates the transmission timing and channel information of WLAN by reading request to send/clear to send (RTS/CTS) frames of WLAN. Next, based on the estimated information, home appliances transmit a data at the same time as WLAN transmission. To manage the interference between WLAN and smart grid network, we propose a cognitive beamforming algorithm. The beamforming algorithm is designed to guaranteeing zero interference to WLAN while satisfying a required rate for smart metering. We also propose an energy efficient rate adaptation algorithm. By slowing down the transmission rate while satisfying an imperceptible impact of quality of service (QoS) of the receiver, the home appliance can significantly save transmit power. Numerical results show that the proposed multiple antenna technique provides reliable communications for smart metering with reduced power comparing to the simple transmission technique.

Development of a Parallel Cell-Based DSMC Method Using Unstructured Meshes (비정렬격자에서 병렬화된 격자중심 직접모사 기법 개발)

  • Kim, Hyeong-Sun;Kim, Min-Gyu;Gwon, O-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • In the present study, a parallel DSCM technique based on a cell-based data structure is developed for the efficient simulation of rarefied gas flows especially od PC clusters. Dynamic load balancing is archieved by decomposing the computational domain into several sub-domains and accounting for the number of particles and the number cells of each domain. Mesh adaptation algorithm is also applied to improve the resolution of the solution and to reduce the grid dependency. It was demonstrated that accurate solutions can be obtained after several levels of mesh adapation starting from a coars initial grid. The method was applied to a two-dimensioanal supersonic leading-edge flow and the axi-symmetric Rothe nozzle flow to validate the efficiency of the present method. It was found that the present method is a very effective tool for the efficient simulation of rarefied gas flow on PC-based parallel machines.

Development of a Climate Change Vulnerability Assessment Analysis Tool: Based on the Vulnerability Assessment of Forest Fires in Chungcheongnam-do (기후변화 취약성 평가 분석도구 개발에 관한 연구: 충남지역 산불 취약성을 중심으로)

  • Yoon, Soo Hyang;Lee, Sang Sin
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.275-285
    • /
    • 2017
  • Chungnam region has established and executed the 2nd Climate Change Adaptation Initiative Execution Plan (2017~2021) based on the Framework Act on Low Carbon, Green Growth. The Execution Plan is established based on the results of climate change vulnerability assessment using the CCGIS, LCCGIS, and VESTAP analysis tools. However, the previously developed climate change vulnerability assessment tools (CCGIS, LCCGIS, VESTAP) cannot reflect the local records and the items and indices of new assessment. Therefore, this study developed a prototype of climate change vulnerability assessment analysis tool that, unlike the previous analysis tools, designs the items and indices considering the local characteristics and allows analysis of grid units. The prototype was used to simulate the vulnerability to forest fires of eight cities and seven towns in Chungcheongnam-do Province in the 2010s, 2020s, and 2050s based on the RCP (Representative Concentration Pathways) 8.5 Scenario provided by the Korea Meteorological Administration. Based on the analysis, Chungcheongnam-do Province's vulnerability to forest fires in the 2010s was highest in Seocheon-gun (0.201), followed by Gyeryong-si (0.173) and Buyeo-gun (0.173) and the future prospects in the 2050s was highest in Seocheon-gun (0.179), followed by Gyeryong-si (0.169) and Buyeo-gun (0.154). The area with highest vulnerability to forest fires in Chungcheongnam-do Province was Biin-myeon, Seocheon-gun and the area may become most vulnerable was Pangyo-myeon, Seocheon-gun. The prototype and the results of analysis may be used to establish the directions and strategies in regards to the vulnerability to wild fires to secure each local government's 2nd execution plan and attainability.

The technical-economic study of solar PV and renewable energy (태양광에너지 중심의 신재생에너지 기술경제학 모델링 연구)

  • Lee, Munsu;Lee, Minjin;Lee, Younghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.136.1-136.1
    • /
    • 2011
  • An energy modeling analysis method currently has been considered as a new approach for energy policy research, because the importance of renewable energy use has been emphasized more and more. This study used RETScreen model as a clean energy decision making methodology for adaptation to climate change and elimination of various pollutions. This modeling method includes five step standard analysis; energy model, cost analysis, GHG analysis, financial analysis, and sensitivity & risk analysis and it also assesses both conventional and modern energy sources and technologies. This methodology for the photovoltaic(PV) energy modeling is used to evaluate the energy production, financial performance and GHG emissions reduction of photovoltaic projects. In addition, the PV application systems are classified into three basic applications; On-grid system, Off-grid system and water pumping system. This study assesses the renewable energy techno-economic modeling method with the feasibility analysis result of 10 MW PV power plant in Abu Dhabi in United Arab Emirates. Furthermore this study stresses the importance of renewable energy model research by applying to domestic PV power plant which is now in preparation.

  • PDF

Harmonic Identification Algorithms Based on DCT for Power Quality Applications

  • Yepes, Alejandro G.;Freijedo, Francisco D.;Doval-Gandoy, Jesus;Sanchez, Oscar Lopez;Fernandez-Comesana, Pablo;Alvarez, Jano Malvar
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.33-43
    • /
    • 2010
  • The increasing demand for non-sinusoidal currents affects the quality of distribution networks. Harmonic detection is a crucial step in the cancellation of those components by active power filters. In this paper, the discrete cosine transform (DCT) is compared with different implementations based on Fourier transforms, demonstrating their equivalences and the advantages provided by the former. We demonstrate that the phase error in the presence of grid frequency deviations and the transient length are reduced by half in comparison to the discrete Fourier transform. A novel algorithm is developed to provide frequency adaptation to the DCT, taking advantage of its good features. The window width is adjusted in real time according to the actual value of the grid fundamental frequency by means of a phase-locked loop. A technique based on dithering is employed to overcome the limitation caused by the truncation of the window number of samples, so the frequency resolution is enhanced. The theoretical approach is verified by simulated and experimental results.

Evaluation on Climate Change Vulnerability of Korea National Parks (국립공원의 기후변화 취약성 평가)

  • Kim, Chong-Chun;Kim, Tae-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • The purpose of this study is to set the direction to manage national parks to cope with climate change, and offer basic data to establish the relevant policies. Towards this end, this study analyzed the current and future climate change vulnerability of national parks using the 24 proxy variables of vulnerability in the LCCGIS program, a tool to evaluate climate change vulnerability developed by the National Institute of Environmental Research. To analyze and evaluate the current status of and future prospect on climate change vulnerability of national parks, the proxy variable value of climate exposure was calculated by making a GIS spatial thematic map with $1km{\times}1km$ grid unit through the application of climate change scenario (RCP8.5). The values of proxy variables of sensitivity and adaptation capability were calculated using the basic statistics of national parks. The values of three vulnerability evaluation items were calculated regarding the present (2010s) and future (2050s). The current values were applied to the future equally under the assumption that the current state of the proxy variables related to sensitivity and adaptation capability without a future prediction scenario continues. Seoraksan, Odaesan, Jirisan and Chiaksan National Parks are relatively bigger in terms of the current (2010s) climate exposure. The national park, where the variation of heat wave is the biggest is Wolchulsan National Park. The biggest variation of drought occurs to Gyeryongsan National Park, and Woraksan National Park has the biggest variation of heavy rain. Concerning the climate change sensitivity of national parks, Jirisan National Park is the most sensitive, and adaptation capability is evaluated to be the highest. Gayasan National Park's sensitivity is the lowest, and Chiaksan National Park is the lowest in adaptation capability. As for climate change vulnerability, Seoraksan, Odaesan, Chiaksan and Deogyusan National Parks and Hallyeohaesang National Park are evaluated as high at the current period. The national parks, where future vulnerability change is projected to be the biggest, are Jirisan, Woraksan, Chiaksan and Sobaeksan National Parks in the order. Because such items evaluating the climate change vulnerability of national parks as climate exposure, sensitivity and adaptation capability show relative differences according to national parks' local climate environment, it will be necessary to devise the adaptation measures reflecting the local climate environmental characteristics of national parks, rather than establishing uniform adaptation measures targeting all national parks. The results of this study that evaluated climate change vulnerability using climate exposure, sensitivity and adaptation capability targeting Korea's national parks are expected to be used as basic data for the establishment of measures to adapt to climate change in consideration of national parks' local climate environmental characteristics. However, this study analyzed using only the proxy variables presented by LCCGIS program under the situation that few studies on the evaluation of climate change vulnerability of national parks are found, and therefore this study may not reflect overall national parks' environment properly. A further study on setting weights together with an objective review on more proper proxy variables needs to be carried out in order to evaluate the climate change vulnerability of national parks.

Application of a Statistical Interpolation Method to Correct Extreme Values in High-Resolution Gridded Climate Variables (고해상도 격자 기후자료 내 이상 기후변수 수정을 위한 통계적 보간법 적용)

  • Jeong, Yeo min;Eum, Hyung-Il
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.331-344
    • /
    • 2015
  • A long-term gridded historical data at 3 km spatial resolution has been generated for practical regional applications such as hydrologic modelling. However, overly high or low values have been found at some grid points where complex topography or sparse observational network exist. In this study, the Inverse Distance Weighting (IDW) method was applied to properly smooth the overly predicted values of Improved GIS-based Regression Model (IGISRM), called the IDW-IGISRM grid data, at the same resolution for daily precipitation, maximum temperature and minimum temperature from 2001 to 2010 over South Korea. We tested various effective distances in the IDW method to detect an optimal distance that provides the highest performance. IDW-IGISRM was compared with IGISRM to evaluate the effectiveness of IDW-IGISRM with regard to spatial patterns, and quantitative performance metrics over 243 AWS observational points and four selected stations showing the largest biases. Regarding the spatial pattern, IDW-IGISRM reduced irrational overly predicted values, i. e. producing smoother spatial maps that IGISRM for all variables. In addition, all quantitative performance metrics were improved by IDW-IGISRM; correlation coefficient (CC), Index Of Agreement (IOA) increase up to 11.2% and 2.0%, respectively. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were also reduced up to 5.4% and 15.2% respectively. At the selected four stations, this study demonstrated that the improvement was more considerable. These results indicate that IDW-IGISRM can improve the predictive performance of IGISRM, consequently providing more reliable high-resolution gridded data for assessment, adaptation, and vulnerability studies of climate change impacts.

Adaptive Mesh Refinement Using Viscous Adjoint Method for Single- and Multi-Element Airfoil Analysis

  • Yamahara, Toru;Nakahashi, Kazuhiro;Kim, Hyoungjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.601-613
    • /
    • 2017
  • An adjoint-based error estimation and mesh adaptation study is conducted for two-dimensional viscous flows on unstructured hybrid meshes. The error in an integral output functional of interest is estimated by a dot product of the residual vector and adjoint variable vector. Regions for the mesh to be adapted are selected based on the amount of local error at each nodal point. Triangular cells in the adaptive regions are refined by regular refinement, and quadrangular cells near viscous walls are bisected accordingly. The present procedure is applied to single-element airfoils such as the RAE2822 at a transonic regime and a diamond-shaped airfoil at a supersonic regime. Then the 30P30N multi-element airfoil at a low subsonic regime with a high incidence angle (${\alpha}=21deg.$) is analyzed. The same level of prediction accuracy for lift and drag is achieved with much less mesh points than the uniform mesh refinement approach. The detailed procedure of the adjoint-based mesh refinement for the multi-element airfoil case show that the basic flow features around the airfoil should be resolved so that the adjoint method can accurately estimate an output error.

A Study on Strategies of Smart Green City - The Priority Analysis and Application of Planning Technique -

  • Lee, Seo-Jeong;Oh, Deog-Seong
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.5-17
    • /
    • 2015
  • Purpose: The goal of this research is to identify the planning techniques of Smart Green City with Ubiquitous method and carbon-neutral city planning techniques and to induce the main planning techniques through the analysis of relative importance and practical adaptation. Method: First of all, eighteen planning techniques were derived and categorized into three organization systems and six sectors through literature review and FGI analysis considering the applicability of Ubiquitous service for carbon-neutral city planning techniques. Secondly, based on expert surveys and AHP analysis, the importance of Smart Green City planning techniques was evaluated. Thirdly, using case study, six cases related to Smart Green City were analyzed for the current status of application of planning techniques. Lastly, considering the importance of planning techniques and practical aspects, the characteristics of Smart Green City and its implication were estimated. Result: Energy, Resource and Waste and Transportation sector were identified as important sectors for Smart Green City. In addition, 'Construction of Smart Grid', 'System for Utilization of New & Renewable Energy', 'Smart Resource Circulation Management System', 'Establishment of Public Transportation Information System basis', 'Construction of Pedestrian / Bicycle oriented Road Environment' are essential planning techniques to create Smart Green City.

GEP-based Framework for Immune-Inspired Intrusion Detection

  • Tang, Wan;Peng, Limei;Yang, Ximin;Xie, Xia;Cao, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1273-1293
    • /
    • 2010
  • Immune-inspired intrusion detection is a promising technology for network security, and well known for its diversity, adaptation, self-tolerance, etc. However, scalability and coverage are two major drawbacks of the immune-inspired intrusion detection systems (IIDSes). In this paper, we propose an IIDS framework, named GEP-IIDS, with improved basic system elements to address these two problems. First, an additional bio-inspired technique, gene expression programming (GEP), is introduced in detector (corresponding to detection rules) representation. In addition, inspired by the avidity model of immunology, new avidity/affinity functions taking the priority of attributes into account are given. Based on the above two improved elements, we also propose a novel immune algorithm that is capable of integrating two bio-inspired mechanisms (i.e., negative selection and positive selection) by using a balance factor. Finally, a pruning algorithm is given to reduce redundant detectors that consume footprint and detection time but do not contribute to improving performance. Our experimental results show the feasibility and effectiveness of our solution to handle the scalability and coverage problems of IIDS.