• Title/Summary/Keyword: Grid Structures

Search Result 391, Processing Time 0.023 seconds

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

Seismic Performance Evaluation of RC Structure Strengthened by Steel Grid Shear Wall using Nonlinear Static Analysis (비탄성 정적해석을 이용한 격자강판 전단벽 보강 RC구조물의 내진성능평가)

  • Park, Jung Woo;Lee, Jae Uk;Park, Jin Young;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.455-462
    • /
    • 2013
  • The effects of earthquakes can be devastating especially to existing structures that are not based on earthquake resistant design. This study proposes a steel grid shear wall that can provide a sufficient lateral resistance and can be used as a seismic retrofit method. The pushover analysis was performed on RC structure with and without the proposed steel grid shear wall. Obtain the performance point that the target structure for seismic loads applied to evaluate the response and performance levels. The capacity spectrum at performance point is nearly elastic range, so satisfied the performance objectives(LS level). And response modification factor(R factor) were calculated from the pushover analysis. The R factor approach is currently implemented to reflect inelastic ductile behavior of the structures and to reduce elastic spectral demands from earthquakes to the design level. The R factor increases from 2.17 to 3.25 was higher than the design criteria. As a result, according to reinforcement by steel grid shear wall, strength, stiffness, and ductility of the low-rise RC structure has been appropriately improved.

Phantom Protection Method for Multi-dimensional Index Structures

  • Lee, Seok-Jae;Song, Seok-Il;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.3 no.2
    • /
    • pp.6-17
    • /
    • 2007
  • Emerging modem database applications require multi-dimensional index structures to provide high performance for data retrieval. In order for a multi-dimensional index structure to be integrated into a commercial database system, efficient techniques that provide transactional access to data through this index structure are necessary. The techniques must support all degrees of isolation offered by the database system. Especially degree 3 isolation, called "no phantom read," protects search ranges from concurrent insertions and the rollbacks of deletions. In this paper, we propose a new phantom protection method for multi-dimensional index structures that uses a multi-level grid technique. The proposed mechanism is independent of the type of the multi-dimensional index structure, i.e., it can be applied to all types of index structures such as tree-based, file-based, and hash-based index structures. In addition, it has a low development cost and achieves high concurrency with a low lock overhead. It is shown through various experiments that the proposed method outperforms existing phantom protection methods for multi-dimensional index structures.

An Experimental Study on the Application of Shelter Structure Using Deployable Scissors Systems (전개가능형 가위구조시스템을 이용한 쉘터구조물에의 적용성 검토에 관한 실험적 연구)

  • Lim, Ji-Sub;Choi, Sang-Soon;Jeong, Eul-Seok;Kim, Seung-Deog
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.3
    • /
    • pp.101-108
    • /
    • 2014
  • Recently, natural disasters such as earthquake, tsunami, typhoon and tornado are increasing, and cause huge economical loses and victim. Thus, when the disaster occurs, it is important to prepare emergency evacuation shelters for fast and easy construction compared to general building system. And, deployable structures will provide a great help for such aim. Deployable structures have the great advantage of being faster and easier to erect and dismantle compared to conventional building forms. In this study, we confirm the possibility of deployment for shelter structures using scissor structure system. First, Basic model was performed to recognize the appllicability of the deployable systems of the dome-shaped structure. Second, Advanced model that more improved inner space and deployment mechanism was confirmed.

Grid Tests for Large Eddy Simulation of Transitional Flows around Turbulence Stimulators (난류 촉진기 주위 천이 유동의 대형 와 모사를 위한 격자 테스트)

  • Lee, Sang Bong;Park, Dong Woo;Paik, Kwang-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.112-121
    • /
    • 2017
  • Large eddy simulations of transitional flows around a stud installed on a flat plate have been performed to investigate an influence of grid resolution on turbulence stimulation by the stud. Because streamwise vortical structures generated by the stud played an important role in turbulence stimulation of boundary layer, streamwise vorticity was compared in the wake region behind the stud when the number of grids increased or decreased by a ratio of ${\sqrt{2}}$ in streamwise, wall-normal and spanwise directions respectively. The streamwise vorticity was shown to be mainly affected by spanwise grid resolution (${\Delta}z^+$) rather than streamwise and wall-normal grid resolution. In a viewpoint of numerical efficiency as well as physical resolution, ${\Delta}x^+{_{min}}=7.6$, ${\Delta}x^+{_{max}}=41$, ${\Delta}y^+{_{wall}}=0.25$ and ${\Delta}z^+=7.6$ was found to be desirable. Once a grid resolution was determined in each direction, a grid verification was carried out by increasing or decreasing the grid resolution y a ratio of ${\sqrt{2}}$ in all directions. The grid uncertainties of pressure and drag coefficients were 21.6 % and 2.8 % while the corrected uncertainties were 2 % and 0.3 %, respectively.

Analysis of corrugated steel web beam bridges using spatial grid modelling

  • Xu, Dong;Ni, Yingsheng;Zhao, Yu
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.853-871
    • /
    • 2015
  • Up to now, Japan has more than 200 corrugated steel web composite beam bridges which are under construction and have been constructed, and China has more than 30 corrugated steel web composite beam bridges. The bridge type includes the simply supported beam, continuous beam, continuous rigid frame and cable stayed bridge etc. The section form has developed to the single box and multi-cell box girder from the original single box and single chamber. From the stress performance and cost saving, the span range of 50~150 m is the most competitive. At present, the design mostly adopts the computational analytical method combining the spatial bar system model, plane beam grillage model and solid model. However, the spatial bar system model is short of the refinement analysis on the space effect, such as the shear lag effect, effective distribution width problem, and eccentric load factor problem etc. Due to the similarity of the plane beam grillage method in the equivalence principle, it cannot accurately reflect the shearing stress distribution and local stress of the top and bottom plates of the box type composite beam. The solid model is very difficult to combine with the overall calculation. Moreover, the spatial grid model can achieve the refinement analysis, with the integrity of the analysis and the comprehensiveness of the stress checking calculation, and can make up the deficiency of the analytical method currently. Through the example verification of the solid model and spatial grid model, it can be seen that the calculation results for the stress and the displacement of two models are almost consistent, indicating the applicability and precision of the spatial grid model.

An Efficient MapReduce-based Skyline Query Processing Method with Two-level Grid Blocks (2-계층 그리드 블록을 이용한 효과적인 맵리듀스 기반 스카이라인 질의 처리 기법)

  • Ryu, Hyeongcheol;Jung, Sungwon
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.613-620
    • /
    • 2017
  • Skyline queries are used extensively to solve various problems, such as in decision-making, because they find data that meet a variety of user criteria. Recent research has focused on skyline queries by using the MapReduce framework for large database processing, mainly in terms of applying existing index structures to MapReduce. In a skyline, data closer to the origin dominate more area. However, the existing index structure does not reflect such characteristics of the skyline. In this paper, we propose a grid-block structure that groups grid cells to match the characteristics of a skyline, and a two-level grid-block structure that can be used even when there are no data close to the origin. We also propose an efficient skyline-query algorithm that uses the two-level grid-block structure.

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

Charateristics of the Jointed Steel-Grid Reinforcement and the Application (결합강그리드보강재의 특성 및 적용)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.15-22
    • /
    • 2002
  • To analysis of the embanked slope stability using a jointed reinforcement, the internal stability and the external stability have to be satisfied, respectively. But, because the lengths of ready-made steel-grid were limited, the reinforcements must be connecting themselves to the reinforcing. In this study, the mechanical test was carried out to investigate the tensile failure and the pullout failure at the joint parts of them, which was based on the analysis of reinforced slope in field. Through the tensile tests in mid-air for the jointed steel-grid, the deformation behavior was seriously observed as follows : deformation of longitudinal member, plastic deformation of longitudinal member and of crank part. Those effects were due to the confining pressure and overburden pressure of the surrounding ground. The bearing resistance at jointed part of jointed steel-grid was due to the latter only. The maximum tensile forces were higher about 20kN~27kN than ultimate pullout resistance, but, the results of those was almost the same in mid-soil. The failures of steel-grid occurred at welded point both of longitudinal members and transverse members and of jointed parts. The strength of jointed parts itself got pullout force about 20kN, which was about 65% for ultimate pullout force of the longitudinal members N=2. To the stability analysis of reinforced structure including the reinforced slope, the studying of connection effects at jointed part of reinforcement members must be considered. Through the results of them, the stability of reinforced structures should be satisfied.

Challenges and opportunities in the engineering of intelligent systems

  • Liu, Shi-Chi;Tomizuka, Masayoshi;Ulsoy, A. Galip
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • This paper describes the area of intelligent systems research as funded by the Civil and Mechanical Systems (CMS) Division of the National Science Foundation (NSF). With developments in computer science, information technology, sensing and control the design of typical machines and structures by civil and mechanical engineers is evolving toward intelligent systems that can sense, decide and act. This trend toward electro-mechanical design is well-established in modern machines (e.g. vehicles, robots, disk drives) and often referred to as mechatronics. More recently intelligent systems design is becoming an important aspect of structures, such as buildings and bridges. We briefly review recent developments in structural control, including the role that NSF has played in their development, and discuss on-going CMS activities in this area. In particular, we highlight the interdisciplinary initiative on Sensors and Sensor Networks and the Network for Earthquake Engineering Simulation (NEES). NEES is a distributed cyberinfrastructure to support earthquake engineering research, and provides the pioneering NEES grid computing environment for simulation, teleoperation, data collection and archiving, etc.