• Title/Summary/Keyword: Grid Dependency

Search Result 71, Processing Time 0.029 seconds

Reduction of Grid Size Dependency in DME Spray Modeling with Gas-jet Model (가스 제트 모델을 이용한 DME 분무 해석의 격자 의존성 저감)

  • Oh, Yun-Jung;Kim, Sa-Yop;Lee, Chang-Sik;Park, Sung-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.170-176
    • /
    • 2010
  • This paper describes the grid-size dependency of the conventional Eulerian-Lagrangian method to spray characteristics such as spray penetration and SMD in modeling DME sprays. In addition, the reduction of the grid-size dependency of the present Gas-jet model was investigated. The calculations were performed using the KIVA code and the calculated results were compared to those of experimental result. The results showed that the conventional Eulerian-Laglangian model predicts shorter spray penetration for large cell because of inaccurate calculation of momentum exchange between liquid and gas phase. However, it was shown that the gas-jet model reduced grid-size dependency to spray penetration by calculating relative velocity between liquid and ambient gas based on gas jet velocity.

Reduction of a Numerical Grid Dependency in High-pressure Diesel Injection Simulation Using the Lagrangian-Eulerian CFD Method (Lagrangian-Eulerian 기법을 이용한 고압 디젤 분무 시뮬레이션의 수치해석격자 의존성 저감에 관한 연구)

  • Kim, Sa-Yop;Oh, Yun-Jung;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • In the standard CFD code, Lagrangian-Eulerian method is very popular to simulate the liquid spray penetrating into gaseous phase. Though this method can give a simple solution and low computational cost, it have been reported that the Lagrangian spray models have numerical grid dependency, resulting in serious numerical errors. Many researches have shown the grid dependency arise from two sources. The first is due to unaccurate prediction of the droplet-gas relative velocity, and the second is that the probability of binary droplet collision is dependent on the grid resolution. In order to solve the grid dependency problem, the improved spray models are implemented in the KIVA-3V code in this study. For reducing the errors in predicting the relative velocity, the momentum gain from the gaseous phase to liquid particles were resolved according to the gas-jet theory. In addition, the advanced algorithm of the droplet collision modeling which surmounts the grid dependency problem was applied. Then, in order to validate the improved spray model, the computation is compared to the experimental results. By simultaneously regarding the momentum coupling and the droplet collision modeling, successful reduction of the numerical grid dependency could be accomplished in the simulation of the high-pressure injection diesel spray.

NEAL-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW (과냉 비등유동에 대한 CFD 모의 계산에서의 벽 인접격자 영향)

  • In, W.K.;Shin, C.H.;Chun, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.320-325
    • /
    • 2010
  • A multiphase CFD analysis is performed to investigate the effect of near-wall grid for simulating a subcooled boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and vapor(steam) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit ($y_{w}^{+}$) was examined from 64 to 172 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y_{w}^{+}$ > 100.

  • PDF

NEAR-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW USING WALL BOILING MODEL (벽 비등모델을 이용한 과냉비등 유동에 대한 CFD 모의계산에서 벽 인접격자의 영향)

  • In, W.K.;Shin, C.H.;Chun, T.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.24-31
    • /
    • 2010
  • boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and gas(vapour) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit for lqiuid phase ($y^+_{w,l}$) was examined from 101 to 313 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y^+_{w,l}$ > 300 at the tube exit.

Study of Grid Dependency of Sheet Atomization Model of a Pressure-Swirl Atomizer (스월형 분사기 분무 예측 모델에서의 격자 의존성 연구)

  • Moon, Yoon-Wan;Seol, Woo-Seok;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.817-824
    • /
    • 2010
  • An improved spray model of a pressure-swirl atomizer was developed and the grid dependency of the model was investigated. Since the Lagrangian-Eulerian approach was adopted for tracking droplets, very small grids could not be used. However, in order to detect swirl flow accurately, small grids were needed because of the consideration of swirl injection. In order to overcome these limitations, numerical studies were performed by using various grids with cell sizes ranging from 10.0 $\times$ 10 mm to 0.625 $\times$ 0.625 mm. From these calculated results, it was observed that the most efficient grid cell size was 1.25 $\times$ 1.25 mm.

Perspective on Forest Conservation: A Case Study of Community at Gana Resettlement and Integrated Development Project (GRID), Sabah, Malaysia

  • Yahya, Hardawati;Idrus, Roszehan Mohd.;Talib, Hamimah;Fong, Eunice
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.3
    • /
    • pp.185-193
    • /
    • 2012
  • This study was carried out in Gana Resettlement and Integrated Development (GRID) Project as a pioneer model for Community-Based Forest Management (CBFM) in Sabah, Malaysia. The GRID project is developed to improve community livelihood as well as to promote community involvement in CBFM and at the same time to lessen community encroachment and traditional farming practices inside the forest conservation area. The objectives of this study are: (i) to identify the dependency of local community on forest resources; (ii) to examine local community's roles in conserving forest resources and, (iii) to analyze their views on GRID project in conserving forest. Interviews were conducted with randomly selected 130 households at the GRID project using semi structured questionnaires comprising closed and open-ended questions. The study reveals that community dependency on forest resources have lessened after the resettlement of the GRID project. The community shows positive perspective on their contribution for conserving the forest resources. However, the community's willingness to contribute as well as their real contribution can be further improved. The study recommends the government to create more effective training and relevant activities to improve the livelihood of community as well as to increase their positive perception on forest conservation efforts. Further research to strengthen the relationship between local community and forest governance through forest conservation is also recommended.

Three-Dimensional Numerical Simulation on a Circular-to-Rectangular Transition Duct (Circular-to-Rectangular Transition Duct 에서의 3차원 유동장에 관한 연구)

  • Cho Soo-Yong;Son Ho-Jae
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.55-61
    • /
    • 1998
  • The purpose of this study is to compare the predictive behaviors of the extended $k-{\varepsilon}$ turbulence model and the standard $k-{\varepsilon}$ turbulence model. Grid dependency is tested with the H-type grid and the O-type grid. Computations have been performed for a circular-to-rectangular transition duct. Numerical results for several sections along the streamwise have been obtained to compare with experimental results. The Reynolds number is 390,000 based on the bulk velocity at the inlet. The computed axial velocity contours, transverse velocity profiles, static pressure contours, peripheral skin friction coefficient, and peripheral wall static pressure distributions have been compared with experimental results. The computed results obtained with the extended $k-{\varepsilon}$ turbulence model show better agreement with experimental results than those obtained with the standard $k-{\varepsilon}$ turbulence model. Comparing to the computed results obtained with the H-type grid and O-type grid, those with H-type grid agree well with experimental results.

  • PDF

Three-Dimensional Numerical Simulation within a Circular-to-Rectangular Transition Duct (Circular-to-Rectangular Transition Duct 내부의 3차원 유동장에 관한 연구)

  • Jo, Su-Yong;Jeong, Hui-Taek;Son, Ho-Jae
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.9-16
    • /
    • 1998
  • Predictive behaviors by the extended k-${\varepsilon}$ turbulence model and the standard k-${\varepsilon}$ turbulence model are compared. Grid dependency is tested with the H-type grid as well as the O-type grid. Computations have been performed on a circular-to-rectangular transition duct. The Reynolds number is 390,000 based on the bulk velocity at the inlet. The computed axial velocity contours, transverse velocity profiles, static pressure contours, peripheral skin friction coefficient, peripheral wall static pressure distributions and turbulence kinetic energy have been compared with experimental results. The computed results than those obtained with the standard k-${\varepsilon}$ turbulence model. Comparing to the computed results obtained with the H-type grid and O-type grid, those with H-type grid seem to agree well with experimental results.

  • PDF

Mesh size refining for a simulation of flow around a generic train model

  • Ishak, Izuan Amin;Alia, Mohamed Sukri Mat;Salim, Sheikh Ahmad Zaki Shaikh
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.223-247
    • /
    • 2017
  • By using numerical simulation, vast and detailed information and observation of the physics of flow over a train model can be obtained. However, the accuracy of the numerical results is questionable as it is affected by grid convergence error. This paper describes a systematic method of computational grid refinement for the Unsteady Reynolds Navier-Stokes (URANS) of flow around a generic model of trains using the OpenFOAM software. The sensitivity of the computed flow field on different mesh resolutions is investigated in this paper. This involves solutions on three different grid refinements, namely fine, medium, and coarse grids to investigate the effect of grid dependency. The level of grid independence is evaluated using a form of Richardson extrapolation and Grid Convergence Index (GCI). This is done by comparing the GCI results of various parameters between different levels of mesh resolutions. In this study, monotonic convergence criteria were achieved, indicating that the grid convergence error was progressively reduced. The fine grid resolution's GCI value was less than 1%. The results from a simulation of the finest grid resolution, which includes pressure coefficient, drag coefficient and flow visualization, are presented and compared to previous available data.

Impact Assessment of Plug-in Hybrid Electric Vehicles on Electric Utilities (플러그인 하이브리드 자동차의 시장 형성 시의 전력망에의 영향 분석)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2001-2006
    • /
    • 2008
  • The most concerning issue of these days is the energy crisis by increasing threat of dependency on foreign oil and its volatility itself. In the situations, the PHEV is drawing attention for the next generation's car which could give a chance to decrease the dependency on foreign oil. As well as, the Korean electric power infrastructure is a strategic national asset that is under utilized most of the time. With the proper changes in the operational paradigm, it could generate and deliver necessary energy to charge the PHEVs which could penetrate the market within few years. In doing so, it would reduce greenhouse gas emissions, improve the economics of the electricity industry, and reduce the energy dependency. This paper investigate the technical potential and impacts of using the existing idle capacity of the electric infrastructure in conjunction with the emerging PHEVs technology to meet the majority of daily energy needs of the Korean LDV fleet.

  • PDF