• 제목/요약/키워드: Greenland

검색결과 35건 처리시간 0.021초

중국 운남성 부근에서 발견된 초기 캄브리아기 청지앙동물군 (Early Cambrian Chengjiang Fauna from Yunnan Province, China)

  • 이창진
    • 한국지구과학회지
    • /
    • 제28권2호
    • /
    • pp.248-254
    • /
    • 2007
  • 최근 캄브리아기 초기에 해당하는 동물군 화석이 중국 운남성 부근에서 다량 발견되었다. 이 동물군 화석은 5억 2천만 년 전에서 5억 2천 5백만 년 전의 연대를 가진 마오탕샨 셰일에서 산출되며, 캐나다 로키의 버제스셰일동물군과 그린란드의 시리우스파세트동물군보다 약 1천만년 내지 2천만년 더 오래된 동물군으로 판단된다. 청지앙동물군은 아주 다양한 동물 화석으로 구성되며, 몸체의 약한 부분이 잘 보존되어 있다. 이러한 조건은 유수, 생란 작용, 생화학 작용을 받지 않는 환경 즉 반복된 빠른 퇴적작용에 의해서 화석화된 것이다.

창호의 열관류율, 일사취득계수와 향의 배치가 건물의 냉난방 부하에 미치는 영향에 관한 지역별 비교연구 (Comparative Analysis on the Heating and Cooling Loads Associated with U-value, SHGC and Orientation of the Windows in Different Regions)

  • 최민서;장성주
    • KIEAE Journal
    • /
    • 제13권2호
    • /
    • pp.123-130
    • /
    • 2013
  • The primary goal of this research is to identify the impacts of window design on the energy use in buildings which takes up about 25% of the total energy consumption. Recently, efficient use of energy is gaining more importance in buildings. Window design, especially being dependent on glazing performance choices, is an important factor for reducing energy consumption in most of the buildings. It also is influenced by the latitude of the site and window orientation. This paper aims at identifying the influence of Window performance indicators(U-value, SHGC), orientation and latitude on the building energy consumption with systematically designed simulations. Comparative study has been performed for five different locations; Greenland, Korea, Singapore, Argentina and Chile along with the different window U-value and SHGC values. The results show that optimum window system with properly coordinated window performance indicators(U-value, SHGC), orientation achieves dramatic reduction of energy consumptions. Windows with low U-value could reduce heating loads and high SHGC could reduce cooling loads. The study also verifies that the windows installed at south facade is more energy efficient in the northern hemisphere while windows facing north is more energy efficient in the southern hemisphere.

Reviews on Natural Resources in the Arctic: Petroleum, Gas, Gas Hydrates and Minerals

  • Yoon, Jong-Ryeol;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • 제23권1호
    • /
    • pp.51-62
    • /
    • 2001
  • The Arctic consists of numerous sedimentary basins containing voluminous natural resources and two of the world's major oil and gas producing areas. The western Siberia Basin in the Arctic region has the largest petroliferous province with an area of 800 ${\times}$ 1,200 km and produces more than 60% of total Russian oil production. The North Slope of Alaska produces about 20% of the U.S. output, i.e., 11% of the total U.S. consumption. Being small compared to those regions, the Canadian Northwest Territories and the Pechora Basin in Russia produce only fair amount of oil and natural gas. There are also many promising areas in the northern continental shelf of Russia. In addition to Russia, Svalbard and Greenland have been investigated for oil and gas. Gas hydrates are widespread in both permafrost regions and arctic continental shelf areas. The reserves of gas hydrates in the Arctic Ocean are about 20${\sim}$32% of total estimated amounts of gas hydrates in the world ocean. Mineral mining is well developed, especially in Russia. The major centers are located around the Kuznetsk Basin and Noril'sk. They are major suppliers of gold, tin, nickel, copper, platinum, cobalt, iron ore, coal as well as apatite. There are also some minings of lead-zinc in Alaska and Arctic Canada.

  • PDF

북극해와 북해에서의 해빙 관련 최신 동향(2017년 7월까지) (Recent Trends of Sea Ice in the Arctic Ocean and Northern Sea Route as of July 2017)

  • 하룬 알 러쉬드 아메드;양찬수
    • 한국연안방재학회지
    • /
    • 제4권3호
    • /
    • pp.133-137
    • /
    • 2017
  • The Arctic region remains surrounded by sea ice during most of the period of the year. In the Arctic Ocean the Northern Sea Route (NSR) has been used as an important route for shipping. The arctic sea ice is decreasing since 1979; hence needs to be monitored. In this research work sea ice concentration in the recent years and sea ice concentration anomalies of few months with long term sea ice concentration are studied. The climatology of long term ice concentration data from various satellites, and the recent sea ice concentration data from Advanced Microwave Scanning Radiometer 2 (AMSR2) were used. The results show that sea ice concentration and sea ice extent in the Arctic region decreased by around 5% from 2015 to 2016, but in 2017 increased again in smaller amount in some areas like around Novaya Zemlya, and parts of the sea in between Greenland and Longyearbyen, and around Banks Island. The percentages of sea ice area in NSR for July 7 in 2015 to 2017 were 37%, 39% and 33%, respectively, indicating a large area (around ten thousand $km^2$) become ice free in 2017 compared to the previous year.

Gravity Recovery and Climate Experiment (GRACE) 중력자료 해석을 위한 자료 처리 및 응용 (Data Reductions of Gravity Recovery and Climate Experiment (GRACE) Gravity Solutions and Their Applications)

  • 서기원
    • 한국지구과학회지
    • /
    • 제32권6호
    • /
    • pp.586-594
    • /
    • 2011
  • 2002년 4월에 발사된 Gravity Recovery and Climate Experiment(GRACE) 위성의 중력시간변화 측정을 통해, 기후 및 환경 변화에 의한 지구 내 질량 재배치 연구가 가능해 졌다. GRACE 중력 자료는 구면조화 함수의 계수인 중력 스펙트럼 형태로 제공이 되며, 이를 구면조화 함수를 이용하여 원하는 지역의 중력 변화 또는 질량 변화로 환산을 해야 한다. 하지만, GRACE 중력 자료는 측정 잡음 이외에도 공간적인 알리아스 에러가 존재하여, 질량 재배치 효과를 확인하기 위해서는 중력 스펙트럼의 처리 과정이 필요하다. 이 연구에서는 GRACE 자료를 처리하는 가장 일반적인 방법을 소개하고, 처리된 중력 자료를 이용한 연구 사례를 소개하였다. GRACE 중력 자료를 이용하여 광범위한 지구과학 연구가 진행 중이지만, 그 중 가장 활발한 연구 분야인 육지의 물수지 연구, 빙하 변화 연구 그리고 해수면 상승 연구 등을 중심으로 소개하였다. GRACE 위성과 유사한 인공위성 중력 관측 사업이 2020년까지 계획되어 있으며, 향후 수십년간 축적된 인공위성 중력 자료는 지구 환경 변화 연구에 핵심적인 자료로 활용될 것으로 기대된다.

Prediction of Peak Back Compressive Forces as a Function of Lifting Speed and Compressive Forces at Lift Origin and Destination - A Pilot Study

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • 제2권3호
    • /
    • pp.236-242
    • /
    • 2011
  • Objectives: To determine the feasibility of predicting static and dynamic peak back-compressive forces based on (1) static back compressive force values at the lift origin and destination and (2) lifting speed. Methods: Ten male subjects performed symmetric mid-sagittal floor-to-shoulder, floor-to-waist, and waist-to-shoulder lifts at three different speeds (slow, medium, and fast), and with two different loads (light and heavy). Two-dimensional kinematics and kinetics were captured. Linear regression analyses were used to develop prediction equations, the amount of predictability, and significance for static and dynamic peak back-compressive forces based on a static origin and destination average (SODA) backcompressive force. Results: Static and dynamic peak back-compressive forces were highly predicted by the SODA, with R2 values ranging from 0.830 to 0.947. Slopes were significantly different between slow and fast lifting speeds (p < 0.05) for the dynamic peak prediction equations. The slope of the regression line for static prediction was significantly greater than one with a significant positive intercept value. Conclusion: SODA under-predict both static and dynamic peak back-compressive force values. Peak values are highly predictable and could be readily determined using back-compressive force assessments at the origin and destination of a lifting task. This could be valuable for enhancing job design and analysis in the workplace and for large-scale studies where a full analysis of each lifting task is not feasible.

The Effect of Lifting Speed on Cumulative and Peak Biomechanical Loading for Symmetric Lifting Tasks

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • 제4권2호
    • /
    • pp.105-110
    • /
    • 2013
  • Background: To determine the influence of lifting speed and type on peak and cumulative back compressive force (BCF) and shoulder moment (SM) loads during symmetric lifting. Another aim of the study was to compare static and dynamic lifting models. Methods: Ten male participants performed a floor-to-shoulder, floor-to-waist, and waist-to-shoulder lift at three different speeds [slow (0.34 m/s), medium (0.44 m/s), and fast (0.64 m/s)], and with two different loads [light (2.25 kg) and heavy (9 kg)]. Two-dimensional kinematics and kinetics were determined. A three-way repeated measures analysis of variance was used to calculate peak and cumulative loading of BCF and SM for light and heavy loads. Results: Peak BCF was significantly different between slow and fast lifting speeds (p < 0.001), with a mean difference of 20% between fast and slow lifts. The cumulative loading of BCF and SM was significantly different between fast and slow lifting speeds (p < 0.001), with mean differences ${\geq}80%$. Conclusion: Based on peak values, BCF is highest for fast speeds, but the BCF cumulative loading is highest for slow speeds, with the largest difference between fast and slow lifts. This may imply that a slow lifting speed is at least as hazardous as a fast lifting speed. It is important to consider the duration of lift when determining risks for back and shoulder injuries due to lifting and that peak values alone are likely not sufficient.

Parallel Computing on Intensity Offset Tracking Using Synthetic Aperture Radar for Retrieval of Glacier Velocity

  • Hong, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제35권1호
    • /
    • pp.29-37
    • /
    • 2019
  • Synthetic Aperture Radar (SAR) observations are powerful tools to monitor surface's displacement very accurately, induced by earthquake, volcano, ground subsidence, glacier movement, etc. Especially, radar interferometry (InSAR) which utilizes phase information related to distance from sensor to target, can generate displacement map in line-of-sight direction with accuracy of a few cm or mm. Due to decorrelation effect, however, degradation of coherence in the InSAR application often prohibit from construction of differential interferogram. Offset tracking method is an alternative approach to make a two-dimensional displacement map using intensity information instead of the phase. However, there is limitation in that the offset tracking requires very intensive computation power and time. In this paper, efficiency of parallel computing has been investigated using high performance computer for estimation of glacier velocity. Two TanDEM-X SAR observations which were acquired on September 15, 2013 and September 26, 2013 over the Narsap Sermia in Southwestern Greenland were collected. Atotal of 56 of 2.4 GHz Intel Xeon processors(28 physical processors with hyperthreading) by operating with linux environment were utilized. The Gamma software was used for application of offset tracking by adjustment of the number of processors for the OpenMP parallel computing. The processing times of the offset tracking at the 256 by 256 pixels of window patch size at single and 56 cores are; 26,344 sec and 2,055 sec, respectively. It is impressive that the processing time could be reduced significantly about thirteen times (12.81) at the 56 cores usage. However, the parallel computing using all the processors prevent other background operations or functions. Except the offset tracking processing, optimum number of processors need to be evaluated for computing efficiency.

Soil properties and molecular compositions of soil organic matter in four different Arctic regions

  • Sujeong, Jeong;Sungjin, Nam;Ji Young, Jung
    • Journal of Ecology and Environment
    • /
    • 제46권4호
    • /
    • pp.282-291
    • /
    • 2022
  • Background: The Arctic permafrost stores enormous amount of carbon (C), about one third of global C stocks. However, drastically increasing temperature in the Arctic makes the stable frozen C stock vulnerable to microbial decomposition. The released carbon dioxide from permafrost can cause accelerating C feedback to the atmosphere. Soil organic matter (SOM) composition would be the basic information to project the trajectory of C under rapidly changing climate. However, not many studies on SOM characterization have been done compared to quantification of SOM stocks. Thus, the purpose of our study is to determine soil properties and molecular compositions of SOM in four different Arctic regions. We collected soils in different soil layers from 1) Cambridge Bay, Canada, 2) Council, Alaska, USA, 3) Svalbard, Norway, and 4) Zackenberg, Greenland. The basic soil properties were measured, and the molecular composition of SOM was analyzed through pyrolysis-gas chromatography/mass spectrometry (py-GC/MS). Results: The Oi layer of soil in Council, Alaska showed the lowest soil pH and the highest electrical conductivity (EC) and SOM content. All soils in each site showed increasing pH and decreasing SOC and EC values with soil depth. Since the Council site was moist acidic tundra compared to other three dry tundra sites, soil properties were distinct from the others: high SOM and EC, and low pH. Through the py-GC/MS analysis, a total of 117 pyrolysis products were detected from 32 soil samples of four different Arctic soils. The first two-axis of the PCA explained 38% of sample variation. While short- and mid-hydrocarbons were associated with mineral layers, lignins and polysaccharides were linked to organic layers of Alaska and Cambridge Bay soil. Conclusions: We conclude that the py-GC/MS results separated soil samples mainly based on the origin of SOM (plants- or microbially-derived). This molecular characteristics of SOM can play a role of controlling SOM degradation to warming. Thus, it should be further investigated how the SOM molecular characteristics have impacts on SOM dynamics through additional laboratory incubation studies and microbial decomposition measurements in the field.

Emendation of Rhodomonas marina (Cryptophyceae): insights from morphology, molecular phylogeny and water-soluble pigment in an Arctic isolate

  • Niels Daugbjerg;Cecilie B. Devantier
    • ALGAE
    • /
    • 제39권2호
    • /
    • pp.75-96
    • /
    • 2024
  • Rhodomonas (Cryptophyceae) and species assigned to this genus have undergone numerous taxonomic revisions. This also applies to R. marina studied here as it was originally assigned as a species of Cryptomonas and later considered a variation of R. baltica, the type species. Despite being described more than 130 years ago, R. marina still lacks a comprehensive characterization. Light and electron microscopy were employed to delineate a strain from western Greenland. The living cells were 18 ㎛ long and 9 ㎛ wide, elliptical in shape with a pointed to rounded posterior and truncated anterior in lateral view. Two sub-equal flagella emerged from a vestibulum, where also a furrow extended. In transmission electron microscopy, the furrow was associated with a tubular gullet and the pyrenoid embedded in a deeply lobed chloroplast. The chloroplast contained DNA in perforations and was surrounded by starch grains. A tubular nucleomorph was enclosed within the pyrenoid matrix. In scanning electron microscopy, the inner periplast consisted of rectangular plates with rounded edges and posteriorly these were replaced by a sheet-like structure. The water-soluble pigment was Crypto-Phycoerythrin type I (Cr-PE 545). A phylogenetic inference based on SSU rDNA confirmed the identity of strain S18 as a species of Rhodomonas as it clustered with congeners but also Rhinomonas, Storeatula, and Pyrenomonas. These genera formed a monophyletic clade separated from a diverse assemblage of other cryptophyte genera. To further explore the phylogeny of R. marina a concatenated phylogenetic analysis based on the SSU rDNA-ITS1-5.8S rDNA-ITS2-LSU rDNA region was performed but included only closely related species. The secondary structure of nuclear internal transcribed spacer 2 was predicted and compared to similar structures in related species. Using morphological and molecular signatures as diagnostic features the description of R. marina was emended.