• Title/Summary/Keyword: Greenhouse-control system

Search Result 437, Processing Time 0.043 seconds

Effect of Double Layer Nonwoven Fabrics on the Growth, Quality and Yield of Oriental Melon(Cucumis melo L. var. makuwa Mak.) under Vinyl House (보온부직포 이중피복이 참외의 생육, 품질 및 수량에 미치는 영향)

  • Shin Yong Seub;Park So Deuk;Do Han Woo;Bae Su Gon;Kim Jwoo Hwan;Kim Byung Soo
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.22-28
    • /
    • 2005
  • The use of blankets to preserve heat in oriental melon cultivation is a common practise without artificial heating and warming systems. Efficiency of blanket decreased with annually usage. This experiment was conducted to investigate the effect of double layer nonwoven fabrics on heat conservation, plant growth, fruit quality and yield of oriental melon in greenhouse. The results were compared among the non-woven fabrics of 9+3, 6+6, 6+3 and 12 ounce from transplanting to April 20, 2001, 2002. Night temperature within tunnel was high at 9+3, 6+6, 6+3 and 12 ounce in order. In plant growth, stem length, leaf numbers and exudate, under double layer nonwoven fabrics were better than single layer blanket of 12 ounce especially, 9+3 double layer blanket was the best. Fruit weight, flesh thickness, soluble solid and marketable yield rate remained same in all treatments. Fermented fruit rate was the highest in 12 ounce as $32.9\%,\;19.6\%\;under\;9+3,\;17.1\%\;under\;6+6,\;16.6\%$ under 6+3 double layer nonwoven fabric, respectively. Compared to 2,260kg yield per 10a of 12 ounce single layer nonwoven fabrics, $7\%$ was increased under 9+3 but $3\%\;and\;13\%$ were decreased under 6+6 and 6+3 double layer nonwoven fabrics, respectively. Compared to income, 4,499-thousand-won per 10a, of 12 ounce single layer blanket, $13\%\;and\;3$ were increased under 9+3 and 6+6 double layer nonwoven fabrics, respectively. Whereas, $10\%$ decreased under 6+3 double layer nonwoven fabrics. From this results it is evident that 9+3 double layer nonwoven fabrics was the best for thermokeeping, fruit quality, and was most economic under non heating system.

Establishment of Optimum Nitrogen and Potassium Application for Paprika Fertigation (파프리카 관비재배를 위한 질소 및 칼륨의 시비량 설정)

  • Choi, Gyeong Lee;Rhee, Han Cheol;Yeo, Kyung Hwan;Lee, Seong Chan;Kang, Nam Jun;Choi, Hyo Gil
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • The paprika has emerged as one of the highest-income crops by increase in dimestic and export demand in the greenhouse crops. Nevertheless, there is no standard for fertigation in soil, because general culture system is soilless culture. This study was conducted to establish the optimum nitrogen and potassium application level for paprika fertigation. Four different levels of nitrogen and potassium were applied, treatment levels were 0.5, 1.0, 1.5, 2.0 times of pimiento fertilization recommendations based on soil testing. Experiment to instigate the optimum amounts of nitrogen and potassium were carried out in 2012 and 2013, respectively13. Nitrogen application : stem diameter of 0.5 times was significantly lower than other treatments, but stem length was not affected by nitrogen fiertigation levels. Number of fruit and yield of first fruiting group harvest were not significant difference. but those of the second fruiting group were decreased by increasing nitrogen level beyond 1.0 times treatment and were the lowest in 0.5 times treatment. Overall, the optimum level of nitrogen for fertigation was judged 1.0 times of pimiento fertilization recommendations based on soil testing. Potassium application : Growth was no signigicant trend except stem length. Number of locule, fresh thickness and sugar content were not significant difference. Number of fruit and yield were not significant difference at the first and second fruiting group harvest. But those were significant difference at third fruiting group harvest, maximum yield was obtained by 1.5 times fertigation level. The optimum level of potassium for fertigation was judged 1.5 times of pimiento fertilization recommendations based on soil testing.

Growth and Physiological Adaptations of Tomato Plants (Lycopersicon esculentum Mill) in Response to Water Scarcity in Soil (토양 수분 결핍에 따른 토마토의 생육과 생리적응)

  • Hwang, Seung-Mi;Kwon, Taek-Ryun;Doh, Eun-Soo;Park, Me-Hea
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.266-274
    • /
    • 2010
  • This study aim to investigate fundamentally the growth and physiological responses of tomato plants in responses to two different levels of water deficit, a weak drought stress (-25 kPa) and a severe drought stress (-100 kPa) in soil. The two levels of water deficit were maintained using a micro-irrigation system consisted of soil sensors for the real-time monitoring of soil water content and irrigation modules in a greenhouse experiment. Soil water contents were fluctuated throughout the 30 days treatment period but differed between the two treatments with the average -47 kPa in -25 kPa set treatment and the -119 kPa in -100 kPa set treatment. There were significant differences in plant height between the two different soil water statuses in plant height without differences of the number of nodes. The plants grown in the severe water-deficit treatment had greater accumulation of biomass than the plants in the weak water-deficit treatment. The severe water-deficit treatment (-119 kPa) also induced greater leaf area and leaf dry weight of the plants than the weak water-deficit treatment did, even though there was no difference in leaf area per unit dry weight. These results of growth parameters tested in this study indicate that the severe drought could cause an adaptation of tomato plants to the drought stress with the enhancement of biomass and leaf expansion without changes of leaf thickness. Greater relative water content of leaves and lower osmotic potential of sap expressed from turgid leaves were recorded in the severe water deficit treatment than in the weak water deficit treatment. This finding also postulated physiological adaptation to be better water status under drought stress. The drought imposition affected significantly on photosynthesis, water use efficiency and stomatal conductance of tomato plants. The severe water-deficit treatment increased PSII activities and water use efficiency, but decreased stomatal conductance than the weak water-deficit treatment. However, there were no differences between the two treatments in total photosynthetic capacity. Finally, there were no differences in the number and biomass of fruits. These results suggested that tomato plants have an ability to make adaptation to water deficit conditions through changes in leaf morphology, osmotic potentials, and water use efficiency as well as PSII activity. These adaptation responses should be considered in the screening of drought tolerance of tomato plants.

Effects of Modified Installation Methods of Roof Ventilation Devices in the Single-span Plastic Greenhouses on Yield and Fruit Quality of Oriental Melon (단동 비닐하우스의 지붕 환기장치 설치방법 개선이 참외생육 및 과실수량에 미치는 영향)

  • Yeo, Kyung-Hwan;Yu, In-Ho;Choi, Gyeong Lee;Lee, Seong-Chan;Lee, Jae-Han;Park, Kyoungs Sub;Lee, Jung-Sup;Bekhzod, Khoshimkhujaev
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.334-342
    • /
    • 2016
  • In order to evaluate the modified installation methods of roof ventilation devices, derived from the previous experiment ('investigation into the optimum capacity of roof ventilation devices and their deployment'), the conventional and modified (improved) roof ventilation systems were installed in the single-span plastic greenhouse for growing oriental melons. The roof vents ($60{\varphi}$) and roof fans (maximum air capacity of $38m^3/min$) were installed in the spacing of 15m (FT, modified 'side vent+roof fan' ventilation) and 6m (TT, modified 'side vent+roof vent' ventilation) respectively on the roof of greenhouses for the modified roof ventilation treatments, and 20m (FC, conventional 'side vent+roof fan' ventilation) and 8m (TC, conventional 'side vent+roof vent' ventilation) for the conventional ones. The stem diameter, leaf blade lengh, petiole length, and leaf width were lower in the FT and TT treatments than those in the conventional treatments, FC and TC. Although the fruit weight and total yields were slightly lower in the FT and TT treatments, the marketable fruit ratio (%) were higher, as a result of increased fruiting ratio (%) in these treatments, than those of FC and TC. The marketable yields (kg/10a) in the FT and TT treatments were 8,391 kg/10a and 7,283 kg/10a, which were respectively 661 kg/10a and 487 kg/10a higher than those in the treatments of FC and TC. The modified installation methods of roof fan resulted in production of more female flowers and lower fruit drop ratio (%) compared to conventional meathods. In the treatment of the conventional ventilation with roof vent, the fruit weight, fruit length & width, and flesh thickness were higher than in other treatments, but there were no significant differences in the fruit width and flesh thickness among the treatments.

Relativeness between Growth and Bio-informations of Aeroponically Grown Tomato as Influenced by Spray Intervals of Nutrient Solution (양액의 분무간격에 따른 분무경재배 토마토의 생장 및 생체정보와의 관련성)

  • 정순주;소원온;지전영남;영목방부
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.154-161
    • /
    • 1992
  • This experiment was carried oui to determine the relativeness between growth, yield characters and bio-informations as influenced by the spray and rest time intervals of nutrient solution. Tomato(Lycopersicon esculentum Mill.) were grown in aeroponic system on a misting schedule of continuously 60 sec, 30 sec and 10 sec at 10 min intervals with full strength Yamazaki's solution recommended for tomato production. The results obtained were as follows : 1. Leaf area was highest in the plot of 30 sec spray and 10 min rest while the forest one was the plot of 60 sec spray and 10 min rest. Growth characteristics in terms of dry weight of each organ, number of flower, number of flower setted and fruit dry weight were greater in the plot of 30 sec spray and 10 min rest than the other treatments. 2. The number of flower increased with decreasing dry weight but number of flower sorted was not significantly different among treatment except for the plot of 60 sec spray and 10 min rest. 3. Leaf dry weight and fruit dry weight were highly correlated so that 30 sec spray and 10 min rest plot which is the highest fruit dry weight showed the largest leaf area. Continuously sprayed plot reduced markedly the fruit dry weight compared with leaf area. Optimum spray and rest time of nutrient solution in the range of this experiment was determined as 30 sec spray and 10 min rest. 4. Solar radiation within glasshouse during daytime reduced severely compared with outdoor one and air temperature within greenhouse was higher than the leaf temperature of tomato plant. The changes of environmental factors, solar radiation, temperature were accompanied with the sensitive change of bio-informations of tomato leaf Especially differences of spray intervals of nutrient solution affected greatly to the changes of bio-informations : leaf water potential, stomatal resistance and leaf temperature etc. 5. The changing patterns of leaf growth as influenced by the spray and rest intervals of nutrient solution were closely related to the leaf water potential, stomatal resistance and leaf temperature. Feasibility was demonstrated that measurement of bio-information of tomato leaf as influenced by the change of environmental factors could be expected to the amount of growth and fruit yield.

  • PDF

The control effect of some fungicides against cucumber sclerotinia rot and the sensitivity of sclerotinia isolates to fungicides (오이 균핵병에 대한 몇 가지 살균제의 방제 효과와 살균제에 대한 균핵병균의 감수성 정도 조사)

  • Kim, Myeong-Ok;Min, Ji-Young;Choi, Woo-Bong;Kang, Beum-Kwan;Park, Sung-Woo;Choi, Gyung-Ja;Park, Chang-Sik;Cho, Kwang-Yun;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.429-436
    • /
    • 2005
  • As Sclerotinia sclerotiorum causing cucumber sclerotinia rot was the fastest in the mycelial growth at $25^{\circ}C$, its pathogenicity was strong at the same temperature among several temperatures. All the isolates of Sclerotinia sclerotiorum showed a strong pathogenicity against cucumber fruits, which was confirmed by a disk assay and a wound assay. A wound assay was superior to a disk assay to develop the assay system for assessing the fungicidal activity of several fungicides against Sclerotinia sclerotiorum. In a disk assay, it was very difficult to assess the fungicidal activity, because the pathogenicity of isolates used in the experiment was very strong. At 500 and $3.0{\mu}g/mL$, the activity of dichloflouanid and the mixture of carbendazim and diethofencarb against cucumber sclerotinia rot was 14.3 and 42.3%, respectively, by using a disk assay. However, at same concentration two fungicides showed the high controlling activity as 100 and 92.5%, through a wound assay in a laboratory. Also, the activity of two fungicides was good against cucumber sclerotinia rot in the greenhouse where cucumber plants were cultivated in the field, showing the control value as 91.1 and 82.9% at 100 and $825{\mu}g/mL$, respectively. All the isolates of Sclerotinia sclerotiorum from cucumber fruits sampled in the polyvinyl house were subjected to monitoring for the resistance to 7 fungicides. The $EC_{50}$ value of 7 fungicides was as follows: fenhexamid; $0.13{\mu}g/mL$, procymidon and iprodione; 0.18 and $0.24{\mu}g/mL$, carbendazim and the mixture of carbendazim and diethofencarb; 0.13과 $0.05{\mu}g/mL$, iminoctadine and dichlofluanid; 1.94 and $8.95{\mu}g/mL$. Ultimately it was not found that resistant isolates of Sclerotinia sclerotiorum were appeared in the field.

Hydroponic Nutrient Solution and Light Quality Influence on Lettuce (Lactuca sativa L.) Growth from the Artificial Light Type of Plant Factory System (인공광 식물공장에서 수경배양액 및 광질 조절이 상추 실생묘 생장에 미치는 영향)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Hong, Seung-Gil;Lee, Jae-Su;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.225-236
    • /
    • 2019
  • BACKGROUND: Hydroponics is one of the methods for evaluating plant production using the inorganic nutrient solutions, which is applied under the artificial light conditions of plant factory system. However, the application of the conventional inorganic nutrients for hydroponics caused several environmental problems: waste from culture mediums and high nitrate concentration in plants. Organic nutrients are generally irrigated as a supplementary fertilizer for plant growth promotion under field or greenhouse conditions. Hydroponic culture using organic nutrients derived from the agricultural by-products such as dumped stems, leaves or immature fruits is rarely considered in plant factory system. Effect of organic or conventional inorganic nutrient solutions on the growth and nutrient absorption pattern of green and red leaf lettuces was investigated in this experiment under fluorescent lamps (FL) and mixture Light-Emitting Diodes (LEDs). METHODS AND RESULTS: Single solution of tomatoes (TJ) and kales (K) deriving from agricultural by-products including leaves or stems and its mixed solution (mixture ration 1:1) with conventional inorganic Yamazaki (Y) were supplied for hydroponics under the plant factory system. The Yamazaki solution was considered as a control. 'Jeockchima' and 'Cheongchima' lettuce seedlings (Lactuca sativa L.) were used as plant materials. The seedlings which developed 2~3 true leaves were grown under the light qualities of FL and mixed LED lights of blue plus red plus white of 1:2:1 mixture in energy ratio for 35 days. Light intensity of the light sources was controlled at 180 μmol/㎡/s on the culture bed. The single and mixture nutrient solutions of organic and/or inorganic components which controlled at 1.5 dS/m EC and 5.8 pH were regularly irrigated by the deep flow technique (DFT) system on the culture gutters. Number of unfolded leaves of the seedlings grown under the single or mixed nutrient solutions were significantly increased compared to the conventional Y treatment. Leaf extension of 'Jeockchima' under the mixture LED radiation condition was not affected by Y and YK or YTJ mixture treatments. SPAD value in 'Jeockchima' leaves exposed by FL under the YK mixture medium was approximately 45 % higher than under conventional Y treatment. Otherwise, the maximum SPAD value in the leaves of 'Cheongchima' seedlings was shown in YK treatment under the mixture LED lights. NO3-N contents in Y treatment treated with inorganic nutrient at the end of the experiment were up to 75% declined rather than increased over 60 % in the K and TJ organic treatment. CONCLUSION: Growth of the seedlings was affected by the mixture treatments of the organic and inorganic solutions, although similar or lower dry weight was recorded than in the inorganic treatment Y under the plant factory system. Treatment Y containing the highest NO3-N content among the considered nutrients influenced growth increment of the seedlings comparing to the other nutrients. However effect of the higher NO3-N content in the seedling growth was different according to the light qualities considered in the experiment as shown in leaf expansion, pigmentation or dry weight promotion under the single or mixed nutrients.