• 제목/요약/키워드: Greenhouse soil

검색결과 886건 처리시간 0.036초

밭토양에서 저회의 풍화가 온실가스 배출 저감에 미치는 영향 (Effect of Weathering of Bottom Ash on Mitigation of Green House Gases Emission from Upland Soil)

  • 허도영;홍창오
    • 한국환경농학회지
    • /
    • 제38권4호
    • /
    • pp.245-253
    • /
    • 2019
  • BACKGROUND: Weathering of bottom ash (BA) might induce change of its surface texture and pH and affect physical and chemical properties of soil associated with greenhouse gas emission, when it is applied to the arable soil. This study was conducted to determine effect of weathering of BA in mitigating emission of greenhouse gases from upland soil. METHODS AND RESULTS: In a field experiment, methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) emitted from the soil was periodically monitored using closed chamber. Three month-weathered BA and non-weathered BA were applied to an upland soil at the rates of 0, 200 Mg ha-1. Maize (Zea mays L.) was grown from July 1st to Oct 8th in 2018. Both BAs did not affect cumulative CH4 emission. Cumulative CO2 emission were 23.1, 19.8, and 18.8 Mg/ha/100days and cumulative N2O emission were 35.8, 20.9, and 17.7 kg/ha/100days for the control, non-weathered BA, and weathered BA, respectively. Weathering of BA did not decrease emission of greenhouse gases significantly, compared to the weathered BA in this study. In addition, both BAs did not decrease biomass yields of maize. CONCLUSION: BA might be a good soil amendment to mitigate emissions of CO2 and N2O from arable soil without adverse effect on crop productivity.

토양시드뱅크에 의한 식생복원 가능성에 관한 연구 (A Study on the Potential Contribution of Soil Seed Bank to the Revegetation)

  • 고정현
    • 한국환경복원기술학회지
    • /
    • 제10권6호
    • /
    • pp.99-109
    • /
    • 2007
  • The main objectives of this comparative study were 1) to compare the floristic similarity of species composition between the extant vegetation and seedlings from soil seed bank and 2) to quantify the potential contribution of soil seed bank to revegetation of forest in a constructed area, which is called "ecological impact mitigation" in conjunction with the power plant extension. Forest topsoil of seven plots was collected from the surface soil after measurements were taken on the ground vegetation in each plot. A greenhouse experiment was conducted and monitored to analyze the germination potential of soil seed bank. The forest topsoil was spread on plastic trays ($0.7m^2{\times}7$) filled with a 5cm layer of sterilized potting mix. The results of monitoring for 2 years in a greenhouse were as follows : 1) seedlings of soil seed bank per 4.9$m^2$ were 1,269 with 36 species (1st year) and 2,615 with 25 species (2nd year). 2) 38${\pm}$8% of the flora species were germinated from soil seed bank. It can be concluded that the use of soil seed bank would be effective to promote establishment of diverse species and vegetation. However, it behooves to continue monitoring on succession of vegetation and pursue revegetation with other methods for ecological restoration. Finally, adequate topsoil deposit and gathering methods should be studied properly.

Evaluation of Streptomyces saraciticas as Soil Amendments for Controlling Soil-Borne Plant Pathogens

  • Wu, Pei-Hsuan;Tsay, Tung-Tsuan;Chen, Peichen
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.596-606
    • /
    • 2021
  • Soil-borne diseases are the major problems in mono cropping. A mixture (designated LTM-m) composed of agricultural wastes and a beneficial microorganism Streptomyces saraceticus SS31 was used as soil amendments to evaluate its efficacy for managing Rhizoctonia solani and root knot nematode (Meloidogyne incognita). In vitro antagonistic assays revealed that SS31 spore suspensions and culture broths effectively suppressed the growth of R. solani, reduced nematode egg hatching, and increased juvenile mortality. Assays using two Petri dishes revealed that LTM-m produced volatile compounds to inhibit the growth of R. solani and cause mortality to the root knot nematode eggs and juveniles. Pot and greenhouse tests showed that application of 0.08% LTM-m could achieve a great reduction of both diseases and significantly increase plant fresh weight. Greenhouse trials revealed that application of LTM-m could change soil properties, including soil pH value, electric conductivity, and soil organic matter. Our results indicate that application of LTM-m bio-organic amendments could effectively manage soil-borne pathogens.

Dynamics of Functional Genes and Bacterial Community during Bioremediation of Diesel-Contaminated Soil Amended with Compost

  • Hyoju Yang;Jiho Lee;Kyung-Suk Cho
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권4호
    • /
    • pp.471-484
    • /
    • 2023
  • Compost is widely used as an organic additive to improve the bioremediation of diesel-contaminated soil. In this study, the effects of compost amendment on the remediation performance, functional genes, and bacterial community are evaluated during the bioremediation of diesel-contaminated soils with various ratios of compost (0-20%, w/w). The study reveals that the diesel removal efficiency, soil enzyme (dehydrogenase and urease) activity, soil CH4 oxidation potential, and soil N2O reduction potential have a positive correlation with the compost amendment (p < 0.05). The ratios of denitrifying genes (nosZI, cnorB and qnorB) to 16S rRNA genes each show a positive correlation with compost amendment, whereas the ratio of the CH4-oxidizing gene (pmoA) to the 16S rRNA genes shows a negative correlation. Interestingly, the genera Acidibacter, Blastochloris, Erythrobacter, Hyphomicrobium, Marinobacter, Parvibaculum, Pseudoxanthomonas, and Terrimonas are strongly associated with diesel degradation, and have a strong positive correlation with soil CH4 oxidation potential. Meanwhile, the genera Atopostipes, Bacillus, Halomonas, Oblitimonas, Pusillimonas, Truepera, and Wenahouziangella are found to be strongly associated with soil N2O reduction potential. These results provide useful data for developing technologies that improve diesel removal efficiency while minimizing greenhouse gas emissions in the bioremediation process of diesel-contaminated soil.

화훼작물이 재배된 온실 또는 노지재배지의 토양 화학성 비교 (Comparison of Soil Chemical Properties in Greenhouse or Open Field Where Flower Crops were Cultivated from 2018 to 2020)

  • 권혜숙;허성
    • 한국자원식물학회지
    • /
    • 제35권5호
    • /
    • pp.675-685
    • /
    • 2022
  • 2018년부터 2020년까지 화훼작물의 시설 및 노지재배지의 토양 화학성을 비교 분석하였다. 시설재배지 토양의 pH는 3년간 적정 범위 유지되었고, 노지토양도 적정 범위로 유지되었다. 유기물 함량은 두 토양에서 모두 적정 범위로 유지되었고, EC의 경우 시설토양은 적정 기준보다 높았으나, 노지토양에서는 적정 기준 범위로 유지되었다. 유효인산은 시설토양에서 2018년에 560 mg/kg가장 높았으나 매해 낮아져 2020년에 적정 기준 범위로 낮아졌고, 노지재배지 토양은 매해 적정 범위에 유지되었다. 치환성 양이온은 시설재배지 토양에서 3년간 표준 범위보다 높게 유지되어 영양 불균형이 극심하였고, 특히 치환성 칼슘과 마그네슘의 유의성이 높았다. 그러나 노지재배지 토양에서는 치환성 칼슘과 마그네슘이 적정 범위보다 약간 높은 수준이었다. 주성분 분석을 통해서 시설재배지 토양의 치환성 양이온을 비롯해 유효인산, EC가 높은 문제점이 드러났으며, 노지재배지는 시설재배지보다는 상대적으로 낮은 값의 유효인산, EC, 치환성 양이온 분포를 보였다. 그러나 노지재배지 토양의 pH는 변동성이 너무 크고 pH가 높은 토양의 비율이 시설재배지보다 높았다. 또한, 노지재배지 토양은 시설재배지보다 유기물 함량이 낮으므로 유기물 시용에 더욱 적극적으로 노력해야 할 것으로 판단되었다.

Susceptibility to Calonectria ilicicola in Soybean Grown in Greenhouse and Field

  • Kim, K. D.;Russin, J. S.;Snow, J. P.
    • 한국작물학회지
    • /
    • 제43권4호
    • /
    • pp.239-244
    • /
    • 1998
  • Susceptibility of soybean cultivars to Calonectria illicicola was evaluated in a greenhouse by inoculating seedlings with mycelium in agar discs placed on the stems at the soil line. A range of responses was detected among cultivars following inoculation with a virulent isolate of C.ilicicola. Rankings of cultivars between greenhouse tests 1 and 2 were similar for disease severity and areas under the disease progress curves (AUDPC). In addition, rankings of cultivars for Final disease severity were highly correlated with AUDPC in test 1 ($r_s$ =0.88, t =5.48, p<0.001), test 2 ($r_s$ =0.99, t =22.10, p<0.001), and when tests were combined ($r_s$=0.89, t=5.82, p<0. 001). Final disease severity and AUDPC consistently identified Asgrow 7986, Braxton, Cajun, and Forrest as soybean cultivars least susceptible to red crown rot. In 1993 and 1994 field tests, a range in disease susceptibility was observed for tested cultivars but none was completely resistant. Soybean cultivars Braxton, Cajun, and Forrest, which were least susceptible to red crown rot in greenhouse tests, also ranked among cultivars with the lowest disease incidence and AUDPC in field tests. Comparisons .between rankings of the eight cultivars common to greenhouse and field tests showed a correlation between final disease severity from combined greenhouse tests and both final disease incidence ($r_s$=0.63, t =1.99, p<0.1) and AUDPC ($r_s$=0.60, t =1.82, p < 0.2) from the combined field tests. However, AUDPC from greenhouse tests did not correlate with either final disease incidence or AUDPC from field tests. The green-house screening method provided consistent results between greenhouse and field tests and successfully identified the least susceptible cultivars Braxton, Cajun, and Forrest.

  • PDF

무선 센서 네트워크를 이용한 멀티미디어 병해충 예측 관리 시스템 설계 및 구현 (A Design and Implementation of Multimedia Pest Prediction Management System using Wireless Sensor Network)

  • 임은천;신창선;심춘보
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.27-35
    • /
    • 2007
  • 온실을 통해 시설원예작물을 재배하는 대대수의 농업인들은 병해충의 예측, 진단 및 방제에 큰 관심을 가지고 있으며, 특히 농가에서는 병해충 관리 문제가 생산량과 품질에 직결되는 가장 큰 문제로 대두되고 있다. 따라서 본 논문에서는 토양 및 환경 센서를 이용하여 무선 센서 네트워크를 구성하고 이를 토대로 온실 내의 작물의 병해충에 대한 조기 예측 및 관리를 가능하게 하는 멀티미디어 병해충 예측 관리 시스템을 설계 및 구현한다. 제안하는 시스템은 기존 고가의 PLC 장비에 비해 온실 내에 무선 센서 네트워크를 형성하여 효율적으로 병해충정보를 데이터베이스화하고 토양 및 온도, 습도, 조도와 같은 다양한 환경 정보를 수집할 수 있다. 아울러 시스템의 수행성을 검증하기 위해 가상 온실 모형을 제작한 후, 모형에 토양 및 환경 센서의 시스템 구성요소를 구성하여 각 플랫폼(Desktop, Web, PDA)별 GUI를 구현하여 온실상태에 따라 병해충 예측 및 관리가 가능한 수행 결과를 보였다. 마지막으로 제안한 시스템을 이용하여 온실 작물의 병해충 예측 관리가 다양한 플랫폼에서 잘 동작함을 확인할 수 있었다.

  • PDF

시설재배지에서 바이오차 연용이 토양의 화학적 특성 및 온실가스 배출에 미치는 효과 (Effect of Continuous Biochar Use on Soil Chemical Properties and Greenhouse Gas Emissions in Greenhouse Cultivation)

  • 박재혁;김동욱;강세원;조주식
    • 한국환경농학회지
    • /
    • 제42권4호
    • /
    • pp.435-443
    • /
    • 2023
  • Global concern over climate change, driven by greenhouse gas emissions, has prompted widespread interest in sustainable solutions. In the agricultural sector, biochar has emerged as a focal point for mitigating these emissions. This study investigated the impact of continuous biochar application on CO2 and N2O emissions during the spring cabbage cultivation period. Greenhouse gas emissions in the biochar treatment groups (soils treated with 1, 3, and 5 tons/ha of rice husk biochar) were compared to those in the control group without biochar. During the spring cabbage cultivation period in 2022, the total CO2 emissions were in the range of 71.6-119.0 g/m2 day, and in 2023, with continuous biochar application, they were in the range of 71.6-102.1 g/m2 day. The total emissions of N2O in 2022 and 2023 were in the range of 11.7-23.7 and 7.8-19.9 g/m2 day, respectively. Overall, greenhouse gas emissions decreased after biochar treatment, confirming the positive influence of biochar on mitigating greenhouse gas release from the soil. Nevertheless, further research over an extended period exceeding five years is deemed essential to delve into the specific mechanisms behind these observed changes and to assess the long-term sustainability of biochar's impact on greenhouse gas dynamics in agricultural settings.

Annual Greenhouse Gas Removal Estimates of Grassland Soil in Korea

  • Lee, Sang Hack;Park, Hyung Soo;Kim, Young-Jin;Kim, Won Ho;Sung, Jung Jong
    • 한국초지조사료학회지
    • /
    • 제35권3호
    • /
    • pp.251-256
    • /
    • 2015
  • The study was conducted to determine greenhouse gas (GHG) inventories in grasslands. After 'Low Carbon Green Growth' was declared a national vision on 2008, Medium-term greenhouse gas reduction was anticipated for 30% reduction compared to Business As Usual (BAU) by 2020. To achieve the reduction targets and prepare to enforce emissions trading (2015), national GHG inventories were measured based on the 1996 Intergovernmental Panel on Climate Change Guidelines (IPCC GL). The national Inventory Report (NIR) of Korea is published every year. Grassland sector measurement was officially added in 2014. GHG removal of grassland soil was measured from 1990 to 2012. Grassland area data of Korea was used for farmland area data in the "Cadastral Statistical Annual Report (1976~2012)". Annual grassland area corresponding to the soil classification was used "Soil classification and commentary in Korea (2011)". Grassland area was divided into 'Grassland remaining Grassland' and 'Land converted to Grassland'. The accumulated variation coefficient was assumed to be the same without time series changes in grassland remaining grassland. Therefore, GHG removal of soil carbon was calculated as zero (0) in grassland remaining grassland. Since the grassland area increases constantly, the grassland soil sinks constantly . However, the land converted to grassland area continued to decrease and GHG removal of soil carbon was reduced. In 2012 (127.35Gg $CO_2$), this removal decreased by 76% compared to 1990 (535.71 Gg $CO_2$). GHG sinks are only grasslands and woodlands. The GHG removaled in grasslands was very small, accounting for 0.2% of the total. However, the study provides value by identifying grasslands as GHG sinks along with forests.

Assessment of Heavy Metal Concentrations in Greenhouse Soils of Gyeongnam Province

  • Son, Daniel;Cho, Hyeon-Ji;Heo, Jae-Young;Lee, Byeong-Jeong;Hong, Kwang-Pyo;Lee, Young Han
    • 한국토양비료학회지
    • /
    • 제50권5호
    • /
    • pp.383-390
    • /
    • 2017
  • Heavy metal contamination of soil might be a cause of serious concern due to the potential health impacts of consuming contaminated products. In this study, the total content of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, As, and Hg) in soils was analyzed, and the difference of heavy metal contents depending on crops, soil characteristics, and topography was compared in 169 greenhouse soils obtained from Gyeongnam Province. The concentrations of the heavy metals were $0.25mg\;kg^{-1}$ (ranged 0.01~0.44) for Cd, $28.94(0.53{\sim}72.63)mg\;kg^{-1}$ for Cr, $26.03(0.5{\sim}166.13)mg\;kg^{-1}$ for Cu, $14.91(1.27{\sim}33.22)mg\;kg^{-1}$ for Ni, $15.76(0.43{\sim}57.1)mg\;kg^{-1}$ for Pb, $119.72(6.33{\sim}239.39)mg\;kg^{-1}$ for Zn, $2.54(0.01{\sim}23.57)mg\;kg^{-1}$ for As, and $0.049(0.012{\sim}0.253)mg\;kg^{-1}$ for Hg in topsoils. The concentrations of Pb and As in topsoil were highest in green pepper and those of Cd, Cr, and Ni were highest in melon. In addition, the concentrations of Cr and Ni were highest in diluvial terrace compared with the other topographies. Higher concentrations of Cd, Cr, and Ni were found in silty clay loam and silt loam soils than sandy loam and loam soils.