• Title/Summary/Keyword: Greenhouse gas

Search Result 1,887, Processing Time 0.025 seconds

Estimation of Greenhouse Gas Emissions During the Construction of Jangbogo Antarctic Research Station (남극 장보고기지 건설 시 온실가스 배출량 산정)

  • Joo, Jin Chul;Yun, Jeongim;Lee, Seungeun;Kim, Yu-Min;Chae, Chang-U;Kim, YoungSeok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.270-279
    • /
    • 2012
  • In this study, greenhouse gas emissions occurring from the construction of Jangbogo Antarctic research station were estimated in terms of material production stages and building stages, respectively. In detail, greenhouse gas emissions during the building stages were estimated in terms of marine transportation, inland transportation, construction equipment utilization, and construction camp operation, respectively. As a result, greenhouse gas emissions from material production stages with life cycle assessment were 8,933 ton (as $CO_{2eq}$), equivalent to the 23.8% of total greenhouse gas emissions from the construction of Jangbogo Antarctic research station, and these results indicate that greenhouse gas emissions occurring from material production stages should not be ignored. During the building stages, greenhouse gas emissions occurring from first year were greater than those from second year due to the increase in fuel consumption of freighter during second year. Additionally, marine transportation compared to inland transportation, construction equipment utilization, and construction camp operation was found to be the greater contributor for greenhouse gas emissions during the building stages. The total greenhouse gas emissions estimated from both material production stages and building stages was 34,486 ton (as $CO_{2eq}$), and greater than those estimated from comprehensive environmental evaluation (CEE) of existing other research stations. This difference is mainly attributed from approximate estimation of greenhouse gas emissions of existing other research stations without considering material production stages.

Characteristics of Aqueous Ammonia-CO2 reaction at Regeneration Condition of High Temperature and Pressure (고압고온 재생조건에서의 암모니아수-CO2 반응특성)

  • Kim, Yun Hee;Yi, Kwang Bok;Park, Sung Youl;Ko, Chang Hyun;Park, Jong-Ho;Beum, Hee Tae;Han, Myungwan;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.253-258
    • /
    • 2010
  • In the field of the $CO_2$ absorption process using aqueous ammonia, the effects of regeneration pressure and temperature on $CO_2$ absorption performances of the aqueous ammonia were investigated. The absorbents were prepared by dissolving ammonium carbonate solid in water to grant the resulted solution 0.5 $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) and various ammonia concentration (14, 20, 26 and 32 wt%). As-prepared absorbents were regenerated at high pressure and temperature (over $120^{\circ}C$ and 6 bar) before the absorption test. The absorption test was carried out by injecting the simulated gas that contains 12 vol% of $CO_2$ into a bubbling reactor. The introduction of 26 wt% of the ammonia concentration for $CO_2$ absorption test resulted in the higher absorption capacities than other experimental conditions. In particular, when the absorbents with 26 wt% of the ammonia were regenerated at $150^{\circ}C$ and 14 bar, the highest absorption capacity, $45ml\;CO_2/g$, was obtained. According to the analysis of absorbents using acid-base titration, the ammonia loss during the regeneration of the absorbents with a fixed ammonia concentration decreased as the regeneration pressure increased, while it increased as the regeneration temperature increased. In the condition of fixed regeneration pressure and temperature, as expected, the ammonia loss increased as the ammonia concentration increased. The measured $CO_2$ loadings and ammonia concentrations of absorbents were compared to the values calculated by Electrolyte NRTL model in Aspen Plus.

Estimation of Greenhouse Gas Reduction Potential by Treatment Methods of Excavated Wastes from a Closed Landfill Site (사용종료매립지(使用終了埋立地) 폐기물(廢棄物)의 처리방법별(處理方法別) 온실(溫室)가스 저감량(低減量) 평가(評價))

  • Lee, Byung-Sun;Han, Sang-Kuk;Kang, Jeong-Hee;Lee, Nam-Hoon
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • This study was carried out to estimate greenhouse gas reduction potentials under treatment methods of combustible wastes excavated from closed landfill. The treatment methods of solid wastes were landfilling, incineration, and production of solid recovery fuel. The greenhouse gas reduction potentials were calculated using the default emission factor presented by IPCC G/L method of IPCC (Intergovernmental Panel on Climate Change). The composition of excavated waste represented that screened soil was the highest (65.96%), followed by vinyl/plastic (19.18%). This means its own component is similar to the other excavated waste from unsanitary landfill sites. Additionally, its bulk density was 0.74 $t/m^3$. In case of landfilling of excavated waste, greenhouse gas emission quantity was 60,542 $tCO_2$. In case of incineration of excavated waste, greenhouse gas emission quantity was 9,933 $tCO_2$. However, solid recovery fuel from excavated waste reduced 33,738 $tCO_2$ of the greenhouse gas emission quantity. Therefore, solid recovery fuel production is helpful to reduce of greenhouse gas emission.

Development of Emission Factors for Greenhouse Gas (CO2) from Bituminous coal Fired Power Plants (에너지사용시설의 온실가스 배출 특성 연구 -유연탄 화력발전소의 이산화탄소를 중심으로-)

  • Jeon Eui Chan;Sal Jae Whan;Lee Seong Ho;Jeong Jae Hak;Kim Ki Hyun;Bae Wi Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.107-116
    • /
    • 2006
  • The main purpose of this study is to develop the greenhouse gas emission factor for power plant using bituminous coal. The power plant is a major source of greenhouse gases among the sectors of fossil fuel combustion, thus information of its emission factors is very essential to the establishment of control strategies for the greenhouse gas emissions. These emission factors derived in this study were compared with those of U. S. EPA, AGO and CCL. The $CO_{2}$ concentrations in the flue gas were measured using NDIR analyser and the GC-FID with a methanizer. The amount of carbon (C) and hydrogen (H) in fuel was measured using an elemental analyzer. Calorific values of fuel were also measured using a calorimeter. Caloric value of bituminous coal used in the power plants were 5,957 (as received basis), 6,591 (air-dried basis) and 6,960 kcal/kg (dry basis). Our estimates of carbon emission factors were lower than those of IPCC. The CO2 emission factors for the power plants using bituminous coal were estimated to be 0.791 Mg/MWh (by carbon contents and caloric value of the fuel) and 0.771 Mg/MWh (by $CO_{2}$ concentration of the flue gas). The $CO_{2}$ emission factors estimated in this study were $3.4\sim 5.4\%$ and $4.4\sim 6.7\%$ lower than those of CCL (2003) and U. S. EPA (2002).

A Study on Environment-Friendly Characteristics of campus buildings for creating a green campus (그린캠퍼스 조성을 위한 대학건물의 친환경적 특성에 관한 연구)

  • Jeong, Sook-In;Nam, Kyung-Sook
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.6
    • /
    • pp.221-228
    • /
    • 2009
  • Recently severity of ecological adaptation and climatic change due to global warming grows larger. According to the fourth report of IPCC in 2007, emission quantity of the earth greenhouse gas(GHGs) generated by activity of mankind increased with 80% since 1970. And it is forecasted that worldwide greenhouse gas will be increased with 25~90%(corresponding to $CO_2$) between 2000 and 2030. This increment of greenhouse gas($CO_2$) is expected to raise average temperature of the earth with the maximum $6.4^{\circ}C$, and sea surface with 59cm in 2090. Like this, destruction of environment by greenhouse gas is regarded as universal problem threatening the existence, not only the problem of one nation. Consequently, systematic correspondence to the global warming at the aspect of energy consumption is also needed in Korea. From the analysis result of 'Statistics of Energy Consumption' published by Green Korea in 2007, energy consumption increment of domestic universities was higher as many as 3.7 times than 22.5% of the whole energy consumption increment in our country. This says to be the direct example which shows that universities are huge sources of greenhouse gas emission. New constructing and enlarging buildings of each universities within campus are the most major reason for such a large increment of energy consumption in universities. The opinion that the possibility of causing energy waste and efficiency reduction is raised by increased buildings of universities has been propounded. That is, universities should make concrete goal and the plan for reducing emission of green house gas against climatic change, and should practice. Accordingly, there is the meaning that 2 aspects of environment-friendly design characteristics, that is application of energy utilizing technology, material usage of energy efficiency-side and environment-side, and introduction of natural element in the environmental aspect, were analyzed for facilities of university campus designed in environment-friendly point of view from initial stage of plan, and direction of environment-friendly design of university facilities in the future was groped in order to grasp environment-friendly design tendency of internal and external University facilities based on this analysis of this paper.

Source, Sinks and Distribution of Greenhouse Greenhouse Gas $Na_2O$ (지구온난화 기체 $Na_2O$의 거동에 관한 고찰)

  • 신찬기
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.1
    • /
    • pp.62-66
    • /
    • 1994
  • Nitrous Oxide( NaO), one of the green house gases, is not confirmed it's sources, sinl life time in the atmosphere clearly so far, In this paper, the emission sources physical characteristics, concentration in the air, monitoring method and distribution for the global warming gas were summarized.

  • PDF

Temperature Distributions inside a Space Heater for Greenhouse (I) - Temperature Characteristics with Heating Oil - (시설원예용 온풍난방기내의 온도분포에 관한 연구 (I) - 난방유 사용시 온도특성 -)

  • 서정덕;김종진;최규성;신창식;노수영
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.335-342
    • /
    • 1999
  • Air and flue gas temperature distributions in the space heater for greenhouse were measured to develop a thermal design technology for the space heater. Also, the characteristics of the fan supplying air to the space heater were investigated. The temperature of the flue gas inside the flue gas tube was linearly decreased as the lenght of than those of the flue gas with the oxygen concentration of 8.25% at the last exit of the second flue gas tube. Thus, the operating efficiency of the space heater could be increased with low air ratio decreased exhausting gas temperature and saved the energy consumption with decreased excess air flow. The temperature of the air supplied by fan was increased slowly around the first flue gas tube, meanwhile, increased sharply around the second flue gas tube due to large LMTD (Logarithmic Mean Temperature Difference) at the first flue gas tube than which of the second flue gas tube.

  • PDF

Environmental awareness and economical profits of replacing gas turbines in gas compressor stations: A case study of Polkalleh station in Iran

  • Sadrnejad, Amin;Noorollahi, Younes;Sadrnejad, Tohid
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.132-139
    • /
    • 2016
  • In early 90s the worldwide awareness about the energy crisis and global warming had been increased and emission reduction (by improving energy efficiency), as well as increasing the capacity of clean and renewable energies, showed themselves as the most important steps towards the sustainable development approach. However, investigations on Iran's environmental situation show huge decline in recent decades and apparently there is no sense of urgency about these issues through the vision of Iranian politicians. In this article the idea of replacing the old gas turbines of Polkalleh natural gas compressor station - as one of the main compressor stations of Iran - with newer and more efficient gas turbines is evaluated, emphatically for reducing greenhouse gases emissions and their environmental costs and decreasing natural gas consumption as well. Clearly such idea is costly, but analyzing its economic impacts, huge declines in annual costs and greenhouse gases emissions can be seen as well. So an investment about $95 million can decrease 40% of Polkalleh compressor station annual costs, 25% of natural consumption and 30% of $CO_2$ and $NO_x$ emissions. Besides the simple payback period of this investment is about 2.5 years from the cut-expenses of annual costs.

Two-stage concession game approach for analyzing greenhouse gases emission reduction schemes

  • Yuan, Liang;He, Weijun;Degefu, Dagmawi Mulugeta;Kim, Soonja;Shen, Juqin;An, Min
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.420-426
    • /
    • 2016
  • Climate change imposes a huge treat on the sustainability of our environment. One of the major reasons for the increasing impacts of climate change is the emission of greenhouse gases. Therefore, cooperative greenhouse gas emission reduction schemes with a general consensus are needed in order to reduce the impacts of climate change. Due to the strong link between greenhouse gas emission and economic development there is disagreement among countries on the designing and implementation of emission reduction plans. In this paper the authors proposed a two-stage concession game to analyze emission reduction plans and determine a balanced emission range that improves the utilities of the bargaining parties. Furthermore the game was applied to a hypothetical example. Our results from the case study indicated that even though the utilities of the bargaining parties is highly affected by emission reductions, after making concessions their utilities can be improved given their emission reductions are within in a certain desirable range. The authors hope that this article provides insights which could be useful for understanding emission reduction plans and their consequences on the negotiating parties.

Estimation of greenhouse gas emissions from the landfill sector with the application of the 2006 IPCC guidelines and the change factors analysis (2006 IPCC 가이드라인 적용에 따른 폐기물 매립 부문의 온실가스 배출량 산정 및 변화 요인 분석)

  • Kim, Ran-Hui;Park, Jin-Kyu;Song, Sang-Hoon;Park, Ok-Yun;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.37-51
    • /
    • 2020
  • Following the Paris Agreement adopted at the end of 2015, global stock-taking has been planned to be carried out on a 5-year basis from 2023, and it is mandatory to report on national GHG inventory and progress toward achieving greenhouse gas reduction targets. To prepare for this, it is important to improve the reliability of estimation of the greenhouse gas emission, identify the characteristics of each greenhouse gas emission source, and manage the amount of emissions. As such, this study compared and analyzed the amount of emissions from the landfill sector using the 2000 GPG, the 2006 IPCC Guidelines, and the 2019 Refinement estimation method. As a result, in comparison to 2016, there were 2,287 Gg CO2_eq. in scenario 1, 1,870 Gg CO2_eq. in scenario 2-1, 10,886 Gg CO2_eq. in scenario 2-2, 10,629 Gg CO2_eq. in scenario 2-3, and 12,468 Gg CO2_eq. in scenario 3. Thus, when the 2006 IPCC Guidelines were applied with respect to 2000 GPG, it was revealed that greenhouse gas emissions have increased. Such difference in the emission changes was due to the changes in the calculation method and the emission factor values applied. Therefore, it is urgent to develop national-specific values of the emission factor based on characteristics of greenhouse gas emission in Korea.