• Title/Summary/Keyword: Greenhouse gas

Search Result 1,925, Processing Time 0.027 seconds

Estimating Litter Carbon Stock and Change on Forest in Gangwon Province from the National Forestry Inventory Data (국가산림자원조사 자료를 활용한 강원도 산림내 낙엽층의 탄소저장량 및 변화량 추정)

  • Lee, Sun Jeoung;Kim, Raehyun;Son, Yeong Mo;Yim, Jong Su
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.385-391
    • /
    • 2017
  • This study was conducted to estimate litter carbon stock change from the National Forest Inventory (NFI) data for national greenhouse gas inventory report. Litter carbon stocks were calculated from the NFI dataset in NFI5 (2008) and NFI6 (2013) in Gangwon province. Total carbon stock change of litter was $0.68{\pm}0.71\;t\;C/ha$ from NFI5 (2008) to NFI6 (2013), however, there was no significant difference between the both dataset at 2008 and 2013 year. Litter carbon stock of coniferous stands was higher than deciduous stands in NFI5 (2008) and NFI6 (2013) (P<0.05). This study was limited to pilot study, so we will assess litter carbon stock using more complete data from NFI systems. It can be used as data sources for national greenhouse gas inventory report on forest sector.

Estimation of GHG Emissions Reduction and Fuel Economy Improvement of Heavy-Duty Trucks by Using Side Skirt and Boat Tail (사이드스커트와 보트테일을 이용한 대형화물차량의 연비개선 효과 및 온실가스 감축량 추정)

  • Her, Chul haeng;Yun, Byoeng gyu;Kim, Dae wook
    • Journal of Climate Change Research
    • /
    • v.7 no.2
    • /
    • pp.177-184
    • /
    • 2016
  • Recently, the need for technology development of commercial vehicle fuel consumption has emerged. Fuel economy improvement of transport equipment and transportation efficiency, and increasing attention to the logistics cost reduction measures. Increasing attention to the logistics cost reduction measures by fuel economy improvement of transport equipment and transportation efficiency. In this study, we have installed aerodynamic reduction device (side skirt, boat tail) to 14.5 ton cargo trucks and 45 ft tractor-trailers. And the fuel consumption was compared installed before and after. Fuel economy assessment for the aerodynamic reduction value device was tested by modifying the SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II test in according domestic situation. Greenhouse gas reductions were calculated in accordance with the scenario, including fuel consumption test results. When the 14.5 ton cargo trucks has been equipped with side skirts and boat tail, it confirmed the improvement in fuel efficiency of 4.72%. One Heavy-duty truck's the annual greenhouse gas reductions value are $6.86ton\;CO_2\;eq$. And if applying the technology to more than 50% of registered 15 ton trucks, greenhouse gas reductions are calculated as $686,826ton\;CO_2\;eq./yr$.

Recalculation of Forest Growing Stock for National Greenhouse Gas Inventory (국가 온실가스 통계 산정을 위한 임목축적 재계산)

  • Lee, Sun Jeoung;Yim, Jong-Su;Son, Yeong Mo;Kim, Raehyun
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.485-492
    • /
    • 2016
  • For reporting national greenhouse gas inventory in forest sector, the forest growing stock from the National Forest Inventory (NFI) system has used as activity data sources. The National Forest Inventory system was changed from rotation system by province to annual system by 5 years across the country. The forest growing stocks based on the new inventory system produced a different trend compared to the previous estimations. This study was implemented to recalculate previous forest growing stocks for time series consistency at a national level. The recalculation of forest growing stock was conducted in an overlap approach by the IPCC guideline. In order to support the more consistency data, we used calibration factors between applied stand volumes in 1985 and 2012, respectively. As a result, the time series of recalculated forest growing stock was to be consistency using the overlap approach and the calibration factor with the lower middle/middle site index. According to the applied overlap period, however, we will recalculate activity data using more complete data from national forest inventory system.

Estimation and Feature of Greenhouse Gas Emission in Building Sector by National Energy Statistic (국가 에너지통계에 따른 건물부문 온실가스 배출량 추계 및 특성)

  • Jeong, Young-Sun;Kim, Tae-Hyoung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.187-195
    • /
    • 2019
  • In December 2015, The Paris Agreement was adopted to undertake ambitious efforts to combat climate change. Korean government announced its goal of reducing the country's greenhouse gas emissions by up to 37% below business as usual projections by 2030 in 2015. The purpose of this study was to set up the calculation methodology of GHG emission($CO_{2e}$) in building sector and to estimate the annual GHG emission in building sector based on national energy consumption statistic. The GHG emission from buildings is about 135.8 million ton $CO_{2e}$ as of 2015, taking up about 19.6% of Korea's entire emission and is about 144.7 million ton $CO_{2e}$ in 2017. The GHG emission of building sector is increasing at annual rate of 2.0% from 2001 to 2017. The GHG emission from electricity consumption in buildings is 91.8 million ton $CO_{2e}$ in 2017, is the highest $CO_2$ emission by energy source. The results show that the intensity of GHG emission of residential building sector is $40.6kg-CO_{2e}/m^2{\cdot}yr$ and that of commercial building sector is $68.4kg-CO_{2e}/m^2{\cdot}yr$.

Comparing the Impacts of Renewable Energy Policies on the Macroeconomy with Electricity Market Rigidities: A Bayesian DSGE Model (전력시장의 경직성에 따른 국가 재생에너지 정책이 거시경제에 미치는 영향 분석: 베이지언 DSGE 모형 접근)

  • Choi, Bongseok;Kim, Kihwan
    • Environmental and Resource Economics Review
    • /
    • v.31 no.3
    • /
    • pp.367-391
    • /
    • 2022
  • We develop an energy-economy Bayesian DSGE model with the two sectors of electricity generations-traditional (fossil, nuclear) and renewable energy. Under imperfect substitutability between the two sectors, a technological shock on renewable energy sectors does not sufficient to facilitate energy conversion and reduce greenhouse gas emissions. Technology innovation on greenhouse gas emission reduction is also required. More importantly, sufficient investment should be derived by a well-functioning electricity market where electricity price plays a signal role in efficient allocation of resources. Indeed, market rigidities cause reduced consumption.

AN ASSESSMENT SYSTEM OF ECO-FRIENDLINESS OF CONSTRUCTED FACILITY IN THE DESIGN PHASE USING VALUE ENGINEERING

  • Byung-Soo, Kim;Dong-Eun, Lee;Suk-Hyun, Kwon;Min-Kwon, Choe
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1625-1629
    • /
    • 2009
  • The new paradigm called 'Low Carbon Green Growth' involved in reducing greenhouse gas is on the rise as a critical issue worldwide. The essential of Kyoto protocol issued in 1997 is to achieve the sustainable economic growth environments by converting existing production system to eco-friendly one. The protocol imposes the liability to reduce greenhouse gas to the countries joined to it. The paradigm is directly involved in the energy consumption and environmental pollution caused by construction activities. Value Engineering which are mainly applied in the design phase in practice is a measure to improve the value of a constructed facility by analyzing and/or appraising the functions and costs of it. However, an appropriate method which assesses eco-friendliness of constructed facility has not been propose by researchers. This paper proposes a method which assesses the performance involved in eco-friendliness of constructed facility using Value Engineering (VE) in the design phase. The method estimates the environmental cost relative to the amounts of energy consumption and environmental pollution occurred over the entire project life cycle. The database called "Life Cycle Inventory DB", which stores information about the amounts of environmental pollution, is used. The algorithm which retrieves the amounts of environmental pollutions from the DB and converts them into environmental costs is developed. The algorithm is implemented into a system which quantifies the eco-friendliness of constructed facility in the design phase using VE.

  • PDF

A Study on the Comprehensive Impact of the 2023 IMO GHG Strategy on International Shipping (2023 IMO 온실가스 전략이 국제해운에 미치는 포괄적 영향에 대한 고찰)

  • Jung-Yoon Lee;Dae-Jung Hwang;Mingyu Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.397-405
    • /
    • 2023
  • As interest in greenhouse gas reduction has increased in all sectors, the discussion of the International Maritime Organization (IMO) to regulate pollution by ships is attracting attention in international shipping. At the 80th IMO MEPC held in July 2023, the 「2023 IMO Strategy for the Reduction of Green House Gases from Ships (MEPC. 377(80))」 was adopted, which included the net-zero target around 2050, and a firm intention to the decarbonization of the international shipping sector showed. In particular, energy, fuel and technology targets for zero or near-zero greenhouse gas emissions by 2030 were added as new targets, and total greenhouse gas emission checkpoints for 2030 and 2040 were added as an indicator for achieving the 2050 target. The IMO's goal setting for 2030, which is about seven years away, will impose a lot of technical, economic, and political burden despite the decarbonization technology of international shipping, which has grown to a significant level in a short period of time. Accordingly, this paper presents the comprehensive impact of the 2023 IMO GHG Strategy on international shipping.

A Study on the Effects of Supply of Fuel Cell Electric Vehicles(FCEV) on Trade (수소연료전지차의 도입이 무역에 미치는 효과 분석에 관한 연구)

  • Soo-Young Oh;Hyang-Sook Lee
    • Korea Trade Review
    • /
    • v.47 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • This study analyzes FCEV among measures to respond to climate change policies. In particular, it proposes alternatives to solve this problem in the trade industry, which relies on transportation sectors with high greenhouse gas emissions such as exports and imports of goods. Therefore, when FCEV is introduced in the transportation sector, changes in CO2 emissions, a greenhouse gas, and changes in logistics costs for changes in CO2 emissions are set through scenarios to evaluate the impact on product trade, such as imports and exports. As a result, the increase in logistics costs due to carbon dioxide emissions affected the import and export volume of goods, and when FCEV was introduced, the export volume would increase by up to 5.6%, and the import volume by up to 30%. In addition, CO2 emissions decreased to about 60% in 2050. Therefore, the introduction of FCEV in the transportation sector will greatly contribute to increasing sales in the trading industry and will be able to solve environmental problems such as greenhouse gas reduction.

Review on Impacts and Possible Adaptation Strategies for Climate Change (기후변화 영향과 향후 적응대책방향에 대한 소고)

  • Choi, Kwang-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.3
    • /
    • pp.201-211
    • /
    • 2008
  • According to IPCC fourth assessment report in 2007, global mean temperatures have risen by 0.74 degrees Celsius over the past 100 years. Moreover, in the recent 25 years, global mean temperatures have risen by 0.45 degrees Celsius, which is 2.4-times larger than those in the past 100 years. The evidences for climate change, such as sea level rise, arctic glacier melt, and desertification in Asia, have occurred and increased over the globe. In Korea, because regional climate has been changed, types of agriculture and fishery should be replaced. And as precipitation pattern behave differently from the past decades, water management would be more difficult, furthermore, atmospheric environment, related to concentrations for ozone, sulfate, etc., could be worse. Nevertheless, we have only focused on greenhouse gas reduction duty for the Convention of Climate Change. Fortunately, in the fourth plan on climate change, we have planned to manage climate change more actively since 2007. In Korea, the emission of carbon dioxide has increased about 1.9-times more, from 311million ton in 1990 to 591million ton in 2004. And also about 2 ppm rise every year for concentrations of carbon dioxide in the atmosphere. As a result, ecosystem, quality of water and atmosphere would be affected. Here, the emission of greenhouse gases over the globe is examined, and the effect of greenhouse gases for climate change is reviewed from the results of previous studies. In addition, the countermeasures of mitigation and adaptation on climate change were discussed for the understanding.

Influence of Greenhouse Gas Emissions from Commercial Aircraft at Korean International Airports on Radiative Forcing and Temperature Change (국내 대규모 공항의 항공기 온실가스 배출에 따른 복사강제력 및 기온변화 영향 연구)

  • Song, Sang-Keun;Shon, Zang-Ho;Jeong, Ju-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.223-232
    • /
    • 2014
  • Monthly variations of radiative forcing (RF) and mean temperature changes by greenhouse gases emitted from commercial aircraft were estimated based on the simplified expression at four international airports (Incheon, Gimpo, Jeju, and Gimhae Airports) during the years of 2009~2010. The highest RF and mean temperature change in the study area occurred at Incheon Airport, whereas the lowest RF and mean temperature change at Gimhae Airport. During 2009~2010, the mean RF and mean temperature change estimated from aircraft $CO_2$ emissions at Incheon Airport were approximately 30.0 $mW/m^2$ and $0.022^{\circ}K$, respectively. The mean RF and mean temperature changes caused by other greenhouse gas $N_2O$ was significantly small (<<0.1 $mW/m^2$ and << $1{\times}10^{-3}^{\circ}K$). Meanwhile, $CH_4$ emissions caused negative mean RF ($-4.45{\times}10^{-3}mW/m^2$ at Incheon Airport) and the decrease of mean temperature ($-3.83{\times}10^{-6}^{\circ}K$) due to consumption of atmospheric $CH_4$ in the aircraft engine.