• Title/Summary/Keyword: Greenhouse gas

Search Result 1,883, Processing Time 0.04 seconds

The Latest Progress on the Development of Technologies for $CO_2$ Storage in Marine Geological Structure and its Application in Republic of Korea (해저 지질구조내 $CO_2$ 저장기술의 연구개발 동향 및 향후 국내 실용화 방안)

  • Kang, Seong-Gil;Huh, Cheol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • To mitigate the climate change and global warming, various technologies have been internationally proposed for reducing greenhouse gas emissions. Especially, in recent, carbon dioxide capture and storage (CCS) technology is regarded as one of the most promising emission reduction options that $CO_2$ be captured from major point sources (eg., power plant) and transported for storage into the marine geological structure such as deep sea saline aquifer. The purpose of this paper is to review the latest progress on the development of technologies for $CO_2$ storage in marine geological structure and its perspective in republic of Korea. To develop the technologies for $CO_2$ storage in marine geological structure, we carried out relevant R&D project, which cover the initial survey of potentially suitable marine geological structure fur $CO_2$ storage site and monitoring of the stored $CO_2$ behavior, basic design for $CO_2$ transport and storage process including onshore/offshore plant and assessment of potential environmental risk related to $CO_2$ storage in geological structure in republic of Korea. By using the results of the present researches, we can contribute to understanding not only how commercial scale (about 1 $MtCO_2$) deployment of $CO_2$ storage in the marine geological structure of East Sea, Korea, is realized but also how more reliable and safe CCS is achieved. The present study also suggests that it is possible to reduce environmental cost (about 2 trillion Won per year) with developed technology for $CO_2$ storage in marine geological structure until 2050.

  • PDF

A Study of Burcucumber Biochars to Remediate Soil Pb Considering GWP (Global Warming Potential) (GWP (Global Warming Potential)를 고려한 가시박 바이오차르의 토양 납 제거 효과 분석)

  • Kim, You Jin;Park, Han;Kim, Min-Ho;Seo, Sung Hee;Ok, Yong Sik;Yoo, Gayoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.432-440
    • /
    • 2015
  • Biochar, a by-product from pyrolysis of biomass, is a promising option to mitigate climate change by increasing soil carbon sequestration. This material is also considered to have potential to remediate a soil with heavy metal pollution by increasing the soil's adsorptive capacity. This study conducted the assessment of two biochars considering the climate change mitigation potential and heavy metal removal capacity at the same time. Two kinds of biochars (BC_Ch, TW_Ch) were prepared by pyrolyzing the biomass of burcucumber (BC_Bm) and tea waste (TW_Bm). The soils polluted with Pb were mixed with biochars or biomass and incubated for 60 d. During the incubation, $CO_2$, $CH_4$, and $N_2O$ were regularly measured and the soil before and after incubation was analyzed for chemical and biological parameters including the acetate extractable Pb. The results showed that only the BC_Ch treatment significantly reduced the amount of Pb after 60 d incubation. During the incubation, the $CO_2$ and $N_2O$ emissions from the BC_Ch and TW_Ch were decreased by 24% and 34% compared to the BC_Bm and TW_Bm, respectively. The $CH_4$ emissions were not significantly affected by biochar treatments. We calculated the GWP considering the production of amendment materials, application to the soils, removal of Pb, and soil carbon storage. The BC_Ch treatment had the most negative value because it had the higher Pb adsorption and soil carbon sequestration. Our results imply that if we apply biochar made from burcucumber, we could expect the pollution reduction and climate change mitigation at the same time.

A Study on the Validity of Rural Type Low Carbon Green Village Through Case Analysis (사례분석을 통한 농촌형 저탄소 녹색마을 타당성 검토)

  • Do, In-Hwan;Hwang, Eun-Jin;Hong, Soo-Youl;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.913-921
    • /
    • 2011
  • This study examined the overall feasibility of low carbon green village formed in rural area. The check method is analyzing its environmental and economic feasibility and energy self-reliance. The biomass of the villages was set as 28 ton/day of livestock feces and 2 ton/day of cut fruit tree branches which make up the total of 30 ton/day. The facility consisted of a bio gasfication facility using wet (livestock feces) biomass and combined heat power generator, composting facility and wood boiler using dry (cut fruit tree branches) biomass. When operating the system, 540,540 kWh/yr of electricity and 1,762 Gcal/yr of heat energy was produced. The region's electricity energy and heat energy self-reliance rate will be 100%. The economic feasibility was found as a loss of 140 million won where the facility installation cost is 5.04 billion won, operation cost is 485.09 million won and profit is 337.12 million won. There will be a loss of about 2.2 billion won in 15 years but in the environmental analysis, it was found that crude replacement effect is about 178 million won, greenhouse gas reduction effect is about 92 million won making up the total environmental benefit of 270 million won. This means, there will be a yearly profit of about 130 million won. In terms of its environmental and economic feasibility and energy self-reliance, this project seemed to be a feasible project in overall even if it manages to get help from the government or local government.

The Effects of Eco-friendly Design of Dishwashing Detergent on Product's Carbon Emission Reduction (친환경 설계로 제조된 주방세제의 탄소배출량 감축 효과)

  • Kim, Jong Seok;Kim, Won Chan;Lee, Yong Ju;Kim, Heung Sik;Park, Heon Young;Yang, Bong Sig;Kim, Wan Soo;Park, Pil Ju;Hong, Eun Ah
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.87-91
    • /
    • 2015
  • As negative effects of climate change have been visualized and its direct damages to economy have been realized, the global efforts to respond to climate change by reducing greenhouse gas emission were accelerated. Korea's Carbon Footprint Labeling gets a lot of attention as one of the effective methods to contribute to national GHG reduction goal, and for enterprises to show customers how much effort the company put into global warming prevention. Consumers' interest on low-carbon products has been increasing. This study uses Life Cycle Assessment method to calculate the amount of carbon emission of dishwashing detergent, LG Household & Healthcare, which reduced carbon emissions by using raw materials that has relatively lower environment load. Life Cycle Assessment Method is based on guidelines of Carbon Footprint Labeling, Ministry of Environment, and pre-manufacturing, manufacturing, and disposal phase are included while use phase of the product is excluded from assessment. In order to understand the effects of eco-design on carbon emissions, the dishwashing detergent's carbon emissions are compared before and after the change of main raw materials. The result shows the improvement from $0.47kgCO_2eq/kg$ to $0.38kgCO_2eq/kg$ per product, and this means the main raw materials' carbon emissions could be reduced by around 9.4%, which is equivalent to 916tons of GHG emissions per year.

Growth response and Variation of ecological niche breadth of Hibiscus hamabo, the endangered plant, according to Light, Moisture and Nutrient under elevated CO2 concentration and temperature (CO2농도 상승과 온도 상승조건에서 광, 수분, 유기물구배에 따른 멸종위기식물인 황근(Hibiscus hamabo)의 생육과 생태적 지위폭의 변화)

  • Lee, Soo-In;Lee, Eung-Pill;Kim, Eui-Ju;Park, Jae-Hoon;Cho, Kyu-Tae;Lee, Seung-Yeon;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • We investigated growth response and variation of ecological niche breadth of Hibiscus hamabo according to light, moisture and nutrient when global warming is proceeded by elevated $CO_2$ concentration and temperature. H. hamabo was cultivated in experimental condition in the greenhouse that are divided by control(ambient condition) and treatment(elevated $CO_2$ concentration and temperature). Light, moisture and nutrient gradients were treated within the control and the treatment. Although H. hamabo prefers higher light intensity(up to L3) to lowers', Hamabo mallow doesn't like excessive light intensity($787{\pm}77.76{\mu}mol\;m^{-2}s^{-1}$). Also, H. hamabo was difficult to grow in absent nutrient(0%) and excessive nutrient(20%). However, there was no trend with moisture gradients. The death rate of H. hamabo in the treatment was higher in all gradients except for the highest light intensity condition than control. It means that range of tolerance about light is narrowed when concentration of $CO_2$ gas and temperature is elevated. There was no trend of death rate according to moisture gradient, comparing between control and treatment. The death rate in all nutrient gradients within the treatment is lower than the controls'. It means that range of tolerance about nutrient is widened. The ecological niche breadth of H. hamabo in the treatment was narrower as 30.1% in light gradients but wider as 8.6% in moisture gradients and 30% in nutrient gradients than in the control. In the conclusion, when global warming is proceeded by elevated $CO_2$ concentration and temperature, growth of H. hamabo would be restricted by light intensity.

Theoretical Study on Optimal Conditions for Absorbent Regeneration in CO2 Absorption Process (이산화탄소 흡수 공정에서 흡수액 최적 재생 조건에 대한 이론적 고찰)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1002-1007
    • /
    • 2012
  • The considerable portion of energy demand has been satisfied by the combustion of fossil fuel and the consequent $CO_2$ emission was considered as a main cause of global warming. As a technology option for $CO_2$ emission mitigation, absorption process has been used in $CO_2$ capture from large scale emission sources. To set up optimal operating parameters in $CO_2$ absorption and solvent regeneration units are important for the better performance of the whole $CO_2$ absorption plant. Optimal operating parameters are usually selected through a lot of actual operation data. However theoretical approach are also useful because the arbitrary change of process parameters often limited for the stability of process operation. In this paper, a theoretical approach based on vapor-liquid equilibrium was proposed to estimate optimal operating conditions of $CO_2$ absorption process. Two $CO_2$ absorption processes using 12 wt% aqueous $NH_3$ solution and 20 wt% aqueous MEA solution were investigated in this theoretical estimation of optimal operating conditions. The results showed that $CO_2$ loading of rich absorbent should be kept below 0.4 in case of 12 wt% aqueous $NH_3$ solution for $CO_2$ absorption but there was no limitation of $CO_2$ loading in case of 20 wt% aqueous MEA solution for $CO_2$ absorption. The optimal regeneration temperature was determined by theoretical approach based on $CO_2$ loadings of rich and lean absorbent, which determined to satisfy the amount of absorbed $CO_2$. The amount of heating medium at optimal regeneration temperature is also determined to meet the difference of $CO_2$ loading between rich and lean absorbent. It could be confirmed that the theoretical approach, which accurately estimate the optimal regeneration conditions of lab scale $CO_2$ absorption using 12 wt% aqueous $NH_3$ solution could estimate those of 20 wt% aqueous MEA solution and could be used for the design and operation of $CO_2$ absorption process using chemical absorbent.

Seismic Data Processing and Inversion for Characterization of CO2 Storage Prospect in Ulleung Basin, East Sea (동해 울릉분지 CO2 저장소 특성 분석을 위한 탄성파 자료처리 및 역산)

  • Lee, Ho Yong;Kim, Min Jun;Park, Myong-Ho
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.25-39
    • /
    • 2015
  • $CO_2$ geological storage plays an important role in reduction of greenhouse gas emissions, but there is a lack of research for CCS demonstration. To achieve the goal of CCS, storing $CO_2$ safely and permanently in underground geological formations, it is essential to understand the characteristics of them, such as total storage capacity, stability, etc. and establish an injection strategy. We perform the impedance inversion for the seismic data acquired from the Ulleung Basin in 2012. To review the possibility of $CO_2$ storage, we also construct porosity models and extract attributes of the prospects from the seismic data. To improve the quality of seismic data, amplitude preserved processing methods, SWD(Shallow Water Demultiple), SRME(Surface Related Multiple Elimination) and Radon Demultiple, are applied. Three well log data are also analysed, and the log correlations of each well are 0.648, 0.574 and 0.342, respectively. All wells are used in building the low-frequency model to generate more robust initial model. Simultaneous pre-stack inversion is performed on all of the 2D profiles and inverted P-impedance, S-impedance and Vp/Vs ratio are generated from the inversion process. With the porosity profiles generated from the seismic inversion process, the porous and non-porous zones can be identified for the purpose of the $CO_2$ sequestration initiative. More detailed characterization of the geological storage and the simulation of $CO_2$ migration might be an essential for the CCS demonstration.

The Economic Effects of the New and Renewable Energies Sector (신재생에너지 부문의 경제적 파급효과 분석)

  • Lim, Seul-Ye;Park, So-Yeon;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.31-40
    • /
    • 2014
  • The Korean government made the 2nd Energy Basic Plan to achieve 11% of new and renewable energies distribution rate until 2035 as a response to cope with international discussion about greenhouse gas emission reduction. Renewable energies include solar thermal, photovoltaic, bioenergy, wind power, small hydropower, geothermal energy, ocean energy, and waste energy. New energies contain fuel cells, coal gasification and liquefaction, and hydrogen. As public and private investment to enhance the distribution of new and renewable energies, it is necessary to clarify the economic effects of the new and renewable energies sector. To the end, this study attempts to apply an input-output analysis and analyze the economic effects of new and renewable energies sector using 2012 input-output table. Three topics are dealt with. First, production-inducing effect, value-added creation effect, and employment-inducing effect are quantified based on demand-driven model. Second, supply shortage effects are analyzed employing supply-driven model. Lastly, price pervasive effects are investigated applying Leontief price model. The results of this analysis are as follows. First, one won of production or investment in new and renewable energies sector induces 2.1776 won of production and 0.7080 won of value-added. Moreover, the employment-inducing effect of one billion won of production or investment in new and renewable energies sector is estimated to be 9.0337 persons. Second, production shortage cost from one won of supply failure in new and renewable energies sector is calculated to be 1.6314 won, which is not small. Third, the impact of the 10% increase in new and renewable energies rate on the general price level is computed to be 0.0123%, which is small. This information can be utilized in forecasting the economic effects of new and renewable energies sector.

Effect of economic growth, industrial structure, efficiency improvement, decarbonization of power sector and fuel substitution for the transition to low carbon society by 2050 (2050년 저탄소 사회로의 전환을 위한 경제성장, 산업구조, 효율개선, 전력 탈탄소화와 연료 대체의 효과)

  • Park, Nyun-Bae;Hong, Sungjun;Park, Sang Yong
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.61-72
    • /
    • 2014
  • This paper analyzed transition pathways toward a low carbon society in Korea to meet global $2^{\circ}C$ climate target. Lower economic growth, industrial structure change, enhance of energy demand management, decarbonization of power sector, and replacement of low carbon fuel could reduce greenhouse gas (GHG) emission from fuel combustion in 2050 by 67% against in 2011, or by 74% against in BAU (Business-As-Usual). Lower economic growth contributes to 13% of cumulative emission reduction relative to BAU, industrial structure change 9%, enhance of energy demand management 72%, decarbonization of power sector 5% and replacement of low carbon fuel 1% respectively. Final energy consumption in 2050 needs to be reduced to 50% relative to 2011, or to 41% relative to BAU. Nuclear, coal and renewable energy represent 31%, 40%, 2% respectively among electricity generation in 2011, but 38%, 2%, 32% in 2050. CCS represents 23% of total generation in 2050. Emission intensity of electricity in 2050 was decreased to 19% relative to 2011, or to 24% relative to BAU. Primary energy in 2050 was decreased to 64% compared to 2011, or to 44% compared to BAU. Final energy consumption, primary energy supply and GHG emission from fuel combustion from 1990 to 2011 increased by 176%, 197%, 146%. Radical change from historical trend is required to transit toward a low carbon society by 2050. Appropriate economic growth, structural change to non-energy intensive industries, energy technology research, development and deployment (RD&D) in terms of enhancement of energy efficiency and low carbon energy supply technologies, and fuel change to electricity and renewable energy are key instruments.

Effects of PAA (Polyaspartic Acid) Contained Complex Fertilizer on Rice Growth and CH4 emission from Rice Cultivation (PAA(Polyaspartic Acid) 함유 복합비료가 벼 생육 및 벼 재배 논에서의 메탄 발생에 미치는 영향 연구)

  • Ju, Okjung;Lee, Jeong-Hyung;Choi, Byoung-Rourl;Won, Tae-Jin;Cho, Kwang-Rae;Seo, Jae-Sun;Kim, Young-Sun;Park, In-Tae
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.705-711
    • /
    • 2013
  • This study was carried out to investigate the effects of the complex fertilizers containing polyaspartic acid (PAA) on growth and $CH_4$ emission in rice field and optimum application rate of the fertilizer compared to the standard recommended application rate (control). The PAA-containing complex fertilizers (PCF) were applied at 55, 65 and 75% levels of standard recommended application rate (control). The application rate of PAA in the plot of every PCF treatment was 150g ai/10a. The PCF was applied as a basal dressing without topdressing at tillering stage. The growth parameters of rice and its nitrogen use efficiency treated with PCF at a 65 to 75% level were not different compared with those of control, and the rice yield was also not significantly different between PCF at a 65 to 75% level and control during 2 years(2010~2011) field experiment. And the $NH_4$-N content in soil was not affected by 65% to 75% level of PCF treatment. Considering overall research results such as rice yield and growth parameters PCF is not significantly different with the control and the optimum application rate of the PCF as a basal fertilization was determined to be 65~75% of the standard application rate based on the result in rice cultivation. Moreover, $CH_4$ emission rate was significantly reduced by PCF treatments, showing 216 kg and 229 kg $CH_4/ha$ at 65% and 75% PCF treatment level, respectively, compared to 266 kg $CH_4/ha$ of the control.