• Title/Summary/Keyword: Greenhouse Management System

Search Result 262, Processing Time 0.02 seconds

A Greenhouse, Diseases and Insects Monitoring System based on PDA for Mobile Users (모바일 사용자를 위한 PDA 기반의 온실 및 병해충 모니터링 시스템)

  • Sim, Chun-Bo;Lim, Eun-Cheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2315-2322
    • /
    • 2008
  • The requesting a consultation of the farm manager is about the diagnosis and prevention of the breeding and extermination for diseases and insects in greenhouse, the managing problem for diseases and insects turn up a main issue. To solve these problems, this paper proposes a PDA based greenhouse, diseases and insects management system for mobile(GDIMS) uses as keeping up with ubiquitous time, which makes prediction and management for diseases and insects more efficiently checked at any time and anywhere you want to, and go well with the motto of ubiquitous. This system is using the environmental data from the greenhouse attached sensors provide the accurate diagnosis and recipes, which supports to product clean crops. There are no need to visit the greenhouse because our system is based on mobile devices that obtain the information in the greenhouse, which makes management in efficient with little number of people. This wort builds simply virtual greenhouse model that assembles system component of environmental sensor for performance analysis and offers a PDA view of the greenhouse status.

A Study on Risk Assessment of GHG Inventory Verification (온실가스 인벤토리 검증의 위험성평가에 대한 연구)

  • Lee, Kang-Bok;Kim, Geon-Ho;Lee, Seung-Hwan;Lee, Eun-Sook
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.11a
    • /
    • pp.203-208
    • /
    • 2009
  • Government and company are unfolding greenhouse gas reduction activity to prevent the effects of global warming. Also, verification business through greenhouse gas inventory construction is spreaded variously. Greenhouse gas verification proceeds by document examination, risk analysis, field survey. Document investigates emission information, calculation standard, emission report, data management system. And through risk assessment result, establish field verification plan. Through study on risk assessment of greenhouse gas inventory verification, wish to reduce risk of verification.

  • PDF

An Establishment of Greenhouse Gas Information System using Excel Spreadsheets (엑셀 스프레드시트를 활용한 온실가스 정보시스템 구축)

  • Lee, Hae-Jung;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.129-136
    • /
    • 2017
  • Climate change is the biggest environmental issue of our times. A variety of activities to reduce greenhouse gas emissions have been in progress to observe the Kyoto Protocol. Especially, the Energy Target Scheme is created to reduce greenhouse emission with the supervision of Korean government. This includes Green-house Gas Information Systems to promote activities in the private sector to reduce green-house gas emissions, to cut a cost of energy use, and to reduce GHG emissions. Also, the system has calculated the amount of greenhouse gases. Without any additional investment, 2.75% savings are increased over the previous year. In service sector, a cooperation of customers and employees is necessary. A reduction of GHG emissions requires a proper service organization, considering an amount of investment and payback period. Without any additional investment or replacement, employees can save energy easily turning off ventilation systems an hour before employees' departure, installing timers to turn off water purifiers and vending machines after some period of no use. The Green-house Gas Information System is similar to that of Environmental Management System. However, the Excel is the best program to calculate an amount of green-house gas emissions, and to assess for a reduced amount of GHG emissions. A goal of this research is to propose a practical method in the private sector to calculate an amount of green-house gases. The Green-house gas Information System based on Excel spreadsheet gives standards for good evaluation. The greenhouse gas information system establishes and executes the policies and objectives related to greenhouse gas emissions Similar to ISO 14001 environment management system structures, the advantages of using simplified Excel Sheet for calculating GHG emissions and reducing GHG emissions are easy to access.

A Design and Implementation of Multimedia Pest Prediction Management System using Wireless Sensor Network (무선 센서 네트워크를 이용한 멀티미디어 병해충 예측 관리 시스템 설계 및 구현)

  • Lim, Eun-Cheon;Shin, Chang-Sun;Sim, Chun-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.27-35
    • /
    • 2007
  • The majority of farm managers growing the garden products in greenhouse concern massively about the diagnosis and prevention of the breeding and extermination for pests. especially, the managing problem for pests turns up as main issue. In the paper, we first build a wireless sensor network with soil and environment sensors such as illumination, temperature and humidity. And then we design and implement multimedia pest predication and management system which is able to predict and manage various pest of garden products in greenhouse. The proposed system can support the database with information about the pests by building up wireless sensor network in greenhouse compared with existing high-priced PLC device as well as collect various environment information from soil, the interior of greenhouse, and the exterior of greenhouse. To verify the good capability of our system, we implemented several GUI interface corresponding desktop. web, and PDA mobile platform based on real greenhouse model. Finally, we can confirm that our system work well prediction and management of pest of garden products in greenhouse based on several platforms.

  • PDF

Development of an Automatic Water Control System for Greenhouse Soil Water Content Management (시설재배 토양의 수분 조절을 위한 자동 수분제어시스템 개발)

  • Lee, D.H.;Lee, K.S.;Chang, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.115-123
    • /
    • 2008
  • This study was conducted to develop an automatic soil water content control system for greenhouse, which consisted of drip irrigation nozzles, soil water content sensors, an on/off valve, a servo-motor assembly and a control program. The control logic adopted in the system was Ziegler-Nichols algorithm and rising time, time constant and over/undershoot ratio as control variables in the system was selected and determined by various control experiments to maintain small delay time and low overshoot. Based on the experimental results, it was concluded that the control system developed in the study could replace the unreliable conventional greenhouse soil water management.

A Study on Analysis of Domestic Energy Consumption and Reduction Greenhouse Gas in Building (에너지 소비분석과 건축분야에서의 온실가스 저감 방안)

  • Park, Jong-Il;Park, Ryul
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • This study aims to analysis domestic energy consumption in Korea and reduction greenhouse gas by building mechanical system. At this point be tormented the energy depletion and climate change of earth are big problems on the eatrh. In this paper we will find out best methods to reduction greenhouse gas and energy consumption by practical building mechanical system. Enlargement of greenhome and building adopt, greenhouse gas exhaust reduction in building, publication of energy consumption rate, publish building energy management manual, etc.

Development of Greenhouse Environment Monitoring & Control System Based on Web and Smart Phone (웹과 스마트폰 기반의 온실 환경 제어 시스템 개발)

  • Kim, D.E.;Lee, W.Y.;Kang, D.H.;Kang, I.C.;Hong, S.J.;Woo, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2016
  • Monitoring and control of the greenhouse environment play a decisive role in greenhouse crop production processes. The network system for greenhouse control was developed by using recent technologies of networking and wireless communications. In this paper, a remote monitoring and control system for greenhouse using a smartphone and a computer with internet has been developed. The system provides real-time remote greenhouse integrated management service which collects greenhouse environment information and controls greenhouse facilities based on sensors and equipments network. Graphical user interface for an integrated management system was designed with bases on the HMI and the experimental results showed that a sensor data and device status were collected by integrated management in real-time. Because the sensor data and device status can be displayed on a web page, transmitted using the server program to remote computer and mobile smartphone at the same time. The monitored-data can be downloaded, analyzed and saved from server program in real-time via mobile phone or internet at a remote place. Performance test results of the greenhouse control system has confirmed that all work successfully in accordance with the operating conditions. And data collections and display conditions, event actions, crops and equipments monitoring showed reliable results.

Building a Private Cloud-Computing System for Greenhouse Control

  • Kim, JoonYong;Lee, Chun Gu;Park, Dong-Hyeok;Park, Heun Dong;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.440-444
    • /
    • 2018
  • Purpose: Cloud-computing technology has several advantages, including maintenance, management, accessibility, and computing power. A greenhouse-control system utilizing these advantages was developed using a private cloud-computing system. Methods: A private cloud needs a collection of servers and a suite of software tools to monitor and control cloud-computing resources. In this study, a server farm, operated by OpenStack as a cloud platform, was constructed using servers, and other network devices. Results: The greenhouse-control system was developed according to the fundamental cloud service models: infrastructure as a service, platform as a service, and software as a service. This system has four additional advantages - security, control function, public data use, and data exchange. There are several considerations that must be addressed, such as service level agreement, data ownership, security, and the differences between users. Conclusions: When the advantages are utilized and the considerations are addressed, cloud-computing technology will be beneficial for agricultural use.

Greenhouse Gas Management Policy during Construction Execution Phase -Focused on Green Building Rating Systems and Japanese Case- (건축물 시공단계에서의 온실가스 배출 관리 방안 -국내외 친환경 인증제도와 일본 현장의 대응 방안을 중심으로-)

  • Song, Sang Hoon
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.139-150
    • /
    • 2010
  • Until now, the eco-friendly construction (green construction) has been focused on reducing environmental impacts in use(operation and maintenance) phase. Considering the environmental influence along the life cycle of construction project, the impact in execution phase is rather lower than that in use phase. However, that impact is thought to be greatly decreased by well-organized activities. Based on its urgency and requirement for timely action, this study aimed to discuss the greenhouse gas (GHG) reduction plan in execution phase from a broad perspective. To achieve this purpose, the green building rating systems in domestic and foreign countries have been reviewed, and the practice in Japan was investigated. In order to improve current on-site greenhouse gas management, the integration among construction phases, participants, and environmental factors, and institutional supports are required as well as the contractor's efforts.

Environmental Assessment of Smart Grid Station Project Centered on Pilot Project of Korea Electric Power Corporation Building

  • Park, Sun-Kyoung;Son, Sung-Yong;Kim, Dongwook;Kim, Buhm-Kyu
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.217-229
    • /
    • 2016
  • Increased evidences reveal that the global climate change adversely affect on the environment. Smart grid system is one of the ways to reduce greenhouse gas emissions in the electricity generation sector. Since 2013, Korea Electric Power Corporation (KEPCO) has installed smart grid station in KEPCO office buildings. The goal of this paper is two folds. One is to quantify the reduction in greenhouse gas emissions through smart grid stations installed in KEPCO office buildings as a part of pilot project. Among components of smart grid stations, this research focused on the photovoltaic power system (PV) and energy storage system (ESS). The other is to estimate the reduction in greenhouse gas emissions when PV is applied on individual houses. Results show that greenhouse gas emissions reduce 5.8~11.3% of the emissions generated through the electricity usage after PV is applied in KEPCO office buildings. The greenhouse gas emissions reduction from ESS is not apparent. When PV of 200~500 W is installed in individual houses, annual greenhouse gas emission reduction in 2016 is expected to be approximately $2.2{\sim}5.4million\;tCO_2-eq$, equivalent to 6~15% of greenhouse gas emissions through the electricity usage in the house hold sector. The saving of annual electricity cost in the individual house through PV of 200 W and 500 W is expected to be 47~179 thous and KRW and 123~451 thousand KRW, respectively. Results analyzed in this study show the environmental effect of the smart grid station. In addition, the results can be further used as guidance in implementing similar projects.