• Title/Summary/Keyword: Greenhouse Gas Reduction Policy

Search Result 135, Processing Time 0.027 seconds

A Cost-Benefit Analysis for the Installation of Piezoelectric Energy Harvester (압전에너지 하베스터 설치사업의 경제성 분석에 관한 연구)

  • Lee, Hyun-Kyung;Lee, Min-Gi;Kim, Hong-Bae
    • Journal of the Korean Regional Science Association
    • /
    • v.33 no.3
    • /
    • pp.49-59
    • /
    • 2017
  • The piezoelectric energy harvester is recently being developed and catching on as a way to achieve low carbon green growth. The practical application of the piezoelectric energy harvester is expected to contribute not only to the reduction of greenhouse gas emissions but also to the improvement of residents' welfare. This paper conducted a cost-benefit analysis for the installation of piezoelectric energy harvester on the highway focusing on its impacts on the public. The results showed that the installation of piezoelectric energy harvester on the gyeongbu highway is economically feasible in that it could increase the social welfare for the residents. Finally, this paper suggests policy direction for the practical use of the piezoelectric energy harvester, based on the results obtained.

A Mathematical Structure and Formulation of Bottom-up Model based on Linear Programming (온실가스감축정책 평가를 위한 LP기반 상향식 모형의 수리 구조 및 정식화에 대한 연구)

  • Kim, Hu Gon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.150-159
    • /
    • 2014
  • Since the release of mid-term domestic GHG goals until 2020, in 2009, some various GHG reduction policies have been proposed. There are two types of modeling approaches for identifying options required to meet greenhouse gas (GHG) abatement targets and assessing their economic impacts: top-down and bottom-up models. Examples of the bottom-up optimization models include MARKAL, MESSAGE, LEAP, and AIM, all of which are developed based on linear programming (LP) with a few differences in user interface and database utilization. In this paper, we suggest a simplified LP formulation and how can build it through step-by-step procedures.

Enhanced Method for Environmental Benefit via Application of Low Impact Development (LID) Technique in Tram Design (트램 설계시 LID 기법 적용을 통한 환경편익 증대 방안)

  • Gu, Su-Hwan;Lee, Yunhee;Oa, Seong-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.826-832
    • /
    • 2016
  • Reduced greenhouse gas effect induced by LID (Low Impact Development) technique application in tramway construction was quantified to increase environmental benefit as part of an overall economic assessment. In addition, by application of penetration type permeable blocks, the effect of the urban water cycle was examined as a special assessment item in the policy analysis. The carbon emission ratios of the permeable turf block, according to the turf coverage rate (100%, 50% granite, and 50% HDPE), against the concrete track construction were -184.7%, -127.3%, and -116.3%, respectively. The carbon emission ratios of permeable blocks with granite and HDPE were 30.1% and 52.5%. In the case of the penetration type permeable block, it was possible to store rainfall in the block until 90mm/hr of rainfall intensity (94.3% of water reserve rate); therefore, this method was effective as part of the urban water cycle system. As a result, an increased environmental benefit from LID technique application is expected in tramway construction; this needs to be considered as a policy factor in AHP analysis.

A Study of Expressway Tollbooth Metering Effect (고속도로 영업소 미터링 효과에 관한 연구)

  • Im, Jin-Won;Yoon, Jae-Yong;Lee, Eui-Eun;Kim, Kwan-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • According to the worldwide efforts to reduce greenhouse gases consequent upon climatic change, the field of road traffic is also making diverse efforts to reduce the emissions of greenhouse gases. Among these, the exhaust gases from vehicles, the so-called main culprit of the greenhouse gases will take place the more as delay and tie-up of vehicles ever take place. Accordingly, as a scheme for reducing the delay & tie-up of vehicles, it's possible to bring up the idea of supply of new facilities and management of the existing facilities; recently, a lot more focus is being put on the management of the existing facilities due to enormous amounts of construction cost. In the midst of growing concern for traffic demand management policy, it's about the time we should do research on the tollbooth metering on the expressway whose research is almost non-existent home and abroad. As a traffic demand management policy coming to happen in case of the management of pay expressway like Japan and Korea, this research analyzed the contents of tollbooth metering, its effect and its subsequent convenience. Especially as a tool for effect analysis, this research made an analysis using VISSIM-a micro-simulation tool. As the tollbooth metering promoted, as a part of green traffic promotion strategy, is expected to contribute to improvement in traffic flow and reduction in carbon emissions, etc. It seems that there needs to be continuous research work on the management plan & revitalization plan for maximization of its effect later as well.

An Analysis of Sectoral GHG Emission Intensity from Energy Use in Korea (기후변화 협약 대응을 위한 산업별 온실가스 배출 특성 분석)

  • Chung, Whan-Sam;Tohno, Susumu;Shim, Sang-Yul
    • Journal of Korea Technology Innovation Society
    • /
    • v.11 no.2
    • /
    • pp.264-286
    • /
    • 2008
  • In 2006, the share of energy in Korea amounted to 28% from the total import, 97% from overseas dependency, and 83% for the national Greenhouse Gas (GHG) emission in 2004. Thus, from the aspects of economical and environmental policies, an energy analysis is very important, for the industry to cope with the imminent pressure for climate change. However, the estimation of GHG gas emissions due to an energy use is still done in a primitive way, whereby each industry's usage is multiplied by coefficients recommended from international organizations in Korea. At this level, it is impossible to formulate the prevailing logic and policies in face of a new paradigm that seeks to force participation of developing countries through so called post-Kyoto Protocol. In this study, a hybrid energy input-output (E-IO) analysis is conducted on the basis of the input-output(IO) table of 2000 issued by the Bank of Korea in 2003. Furthermore, according to economic sectors, emission of the GHG relative to an energy use is characterized. The analysis is accomplished from four points of view as follows: 1) estimating the GHG emission intensity by 96 sectors, 2) measuring the contribution ratio to GHG emissions by 14 energy sources, 3) calculating the emission factor of 3 GHG compounds, and 4) estimating the total amount of national GHG emission. The total amount estimated in this study is compared with a national official statistical number. The approach could be an appropriate model for the recently spreading concept of a Life Cycle Analysis as it analyzes not only a direct GHG emission from a direct energy use but also an associated emission from an indirect use. We expect this model can provide a form for the basis of a future GHG reduction policy making.

  • PDF

Study on Utilization and Prospect of Lignocellulosic Bioethanol in ASEAN Countries (주요 ASEAN 국가의 목질계 바이오에탄올의 활용 및 전망에 관한 연구)

  • Heo, Su Jung;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.588-598
    • /
    • 2017
  • Currently, bioethanol, a fuel additive for transportation, is produced mainly by using biomass (first generation) such as corn and sugar canes. First generation biomass can cause various problems in terms of increase in agricultural prices and ethical reasons. To address these problems, a nonedible lignocellulosic biomass can be utilized. Agricultural byproducts such as straw, bagasse, and forest byproducts from the wood processing industry. Therefore, production of wood based bioethanol can be an effective utilization route of second generation biomass, and its raw materials are more abundant than first generation resources. Furthermore, it is possible to secure cheap raw materials. One of the biggest advantages of using biofuels is that it contributes to the reduction of greenhouse gases by minimizing the environmental impact, unlike fossil fuels. In this study, we investigated the greenhouse gas reduction effects that can be achieved through the use of Lignocellulosic bioethanol and government policies on renewable energy currently being implemented in ASEAN countries (Indonesia, Malaysia, Thailand and the Philippines). In these four countries, policies and incentives related to biofuels have been developed. It is expected that the reduction ratio of carbon dioxide emission and the mixed biofuel will be gradually increased in the future.

A Feasibility Study on Thermal Energy Resource in Deep Ocean Water (해양심층수 에너지자원 이용 타당성 분석 연구)

  • Kim, Jeong-Hyop;Kim, Gwang-Tae;Park, Se-Hun;Oh, Wee-Yeong;Kim, Hyeon-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2012
  • Annual power consumption of our country is positioned in the upper percentile in the world, and because the proportion of fossil power generation is high, which ranks the 10th $CO_2$ emission country. In this regard, government has established and is implementing the National Energy Basic Plan to realize to get out of fossilization in energy supply while focusing on securing the technology for renewable energy as well as its commercialization in order to reduce greenhouse gas. Resource recovery technology for deep seawater thermal energy which is one of renewable energies is newly getting attention domestically as well as in overseas for securing resources and environmental improvement as a core technology for multilateral use of marine resources for low carbon and green growth. Economic feasibility analysis was conducted for the research and development as follows on the use of ocean thermal energy conversion and seawater air conditioning. First, in the case of power generation using deep seawater and warm discharge water from ocean thermal energy conversion plant of 1MW level, it is judged that the economic feasibility is insufficient but the feasibility will be significantly improved if we consider not only power generation but also drinking water and certified emission reduction by developing the power plant to the size for commercialization. Second, the economic feasibility for the use of deep seawater as air conditioning for the power plant of 1,000RT level turned out to be very good. Especially, when we consider certified emission reduction, it will be possible to secure sufficient economic feasibility. When we use it in connection with ocean thermal energy conversion, water conversion and agricultural and fishery use, it is judged that economic ripple effect will be significant and therefore it will be necessary to conduct research and development for early commercialization, distribution and diffusion of deep seawater energy.

A Study on Constructing Bottom-up Model for Electric Sector (전력부문 온실가스 감축정책 평가를 위한 상향식 모형화 방안)

  • Kim, Hugon;Paik, Chunhyun;Chung, Yongjoo;Ahn, Younghwan
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.114-129
    • /
    • 2016
  • Since the release of mid-term domestic GHG goals until 2020, in 2009, some various GHG reduction policies have been proposed to reduce the emission rate about 30% compared to BAU scenario. There are two types of modeling approaches for identifying options required to meet greenhouse gas (GHG) abatement targets and assessing their economic impacts: top-down and bottom-up models. Examples of the bottom-up optimization models include MARKAL, MESSAGE, LEAP, and AIM, all of which are developed based on linear programming (LP) with a few differences in user interface and database utilization. The bottom-up model for electric sector requires demand management, regeneration energy mix, fuel conversation, etc., thus it has a very complex aspect to estimate some various policies. In this paper, we suggest a bottom-up BAU model for electric sector and how we can build it through step-by-step procedures such that includes load region, hydro-dam and pumping storage.

A Study on Environmental Information Disclosure of Hospitals (의료기관의 환경정보공개 현황에 관한 고찰)

  • Kang, Jung-Kyu
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.577-588
    • /
    • 2013
  • Main purpose of this study is to suggest improvement of environmental information disclosure system and to find out counterplan for hospitals based on literal review and 41 hospitals/clinic's environmental information data(2011) released by the Korean ENV-INFO SYSTEM. The research methodology used to analyze 18 items divided between 7 for compulsory and 11 for voluntary was primarily quantitative. Research subjects was comprised of 33 general hospitals, 6 hospitals and 1 clinic. Environmental information disclosure system needs to be improved as follows: (1) enlargement of citizen participation, (2) upgrade of 'Company Overview', (3) clear definition of items, (4) unifying measure unit, (5) close verification, (6) creating standards for additional informations. The following activities are critical for hospitals: (1) reliability enhancement of hospital's data, (2) reorganization strategy & green management system, (3) water/energy reduction data accumulation, (4) greenhouse gas emission reduction planning, (5) introduction of green purchase guidelines, (6) digital publication of environmental(sustainable) report.

A Study on Port's Decarbonization Strategies : focusing on its Barriers and Solutions (항만의 탈탄소 전환에 관한 연구: 장애요인과 해결방안을 중심으로)

  • Han, Chul-Hwan
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.2
    • /
    • pp.137-155
    • /
    • 2024
  • To achieve the national goal of "2050 Carbon Neutrality" in the era of the climate crisis, it is important to support the decarbonization of ports, which are the vital node of the global supply chain. Following the establishment of the concept of port's decarbonzation, this study reviewed the obstacles and solutions to port decarbonization through literature research. Furthermore, the goals and strategies for decarbonization implementation of world major ports were examined through case analysis, and the level of decarbonization implementation of the five Korean major ports was quantitatively evaluated using a performance-based score measurement method. As a result of the analysis, the level of decarbonization of Korean ports is generally far behind that of advanced countries. In particular, measures for environment-friendly inland transportation, future alternative fuel bunkering facilities, and various market-based incentive policies are needed. As a policy task for the decarbonization of Korean ports, first, the necessity of establishing a emission inventory, monitoring, and reporting system and the disclosure of related information, second, the mixing strategy of various greenhouse gas reduction measures, and third, the increase in the proportion of renewable energy at ports were suggested.