• Title/Summary/Keyword: Greenhouse Gas Reduction

Search Result 641, Processing Time 0.032 seconds

Investigation into Methods for reducing Greenhouse Gas Emission in Paper Industry with Development of Greenhouse Gas Inventory (온실가스 인벤토리 구축을 통한 제지산업에서 온실가스 절감 방법론 조사)

  • Kim, Dong-Seop;Sung, Yong-Joo;Lee, Joon-Woo;Kim, Se-Bin;Park, Gwan-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • The reduction of greenhouse gas emission currently becomes more urgent task for Korean Industries, especially for the paper industries because of the new regulation based on the low carbon-green growth law. In order to reduce effectively the greenhouse gas emission, the development of greenhouse gas emission inventory has been widely considered as one of the basic processes and has been applied to many industries. In this study, the fundamental schemes and the cases of greenhouse gas inventories were investigated. Especially, the major considering units for paper industries were suggested to develope greenhouse emission inventory of paper industry.

Analysis of Greenhouse Gas Reduction Potentials in a Electronic·Electrical components company using LEAP Model (LEAP 모형을 활용한 전자소재·부품업의 온실가스 감축 잠재량 분석)

  • Park, Yeong-Su;Cho, Young-Hyuck;Kim, Tae-Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.667-676
    • /
    • 2013
  • This study analyzed the energy demand, greenhouse gas emission and greenhouse gas reduction potential of Electronic Electrical components company. The LEAP model targeting long term energy plan was used to establish the most efficient plan for the companies by examining the climate change policy of government and the countermeasures by companies. A scenario was created by having 11 greenhouse gases reduction plans to be introduced from 2011 as the basic plan. Regarding input data, energy consumption by business place and by use, number of employee from 2009 to 2012, land area and change in number of business places were utilized. The study result suggested that approximately 13,800 TJ of energy will be spent in 2020, which is more than 2 times of 2012 energy consumption. When the integrated scenario based on the reduction plan of companies would be enforced, approximately 3,000 TJ will be reduced in 2020. The emission of greenhouse gases until 2020 was forecasted as approximately 760,000 ton $CO_2eq$. When the integrated scenario would be enforced, the emission will be approximately 610,000 ton $CO_2eq$, which is decrease by approximately 150,000 ton $CO_2eq$. This study will help the efficient responding of eElectronic Electrical components company in preparing detail report on objective management system and enforcement plan. It will also contribute in their image as environment-friendly companies by properly responding to the regulation reinforcement of government and greenhouse gases emission target based on environment policy.

Paper Recycling of South Korea and its Effects on Greenhouse Gas Emission Reduction and Forest Conservation

  • Cha, Junhee;YOUN, Yeo-Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.530-539
    • /
    • 2008
  • The study evaluates the greenhouse gas (GHG) reduction potential of paper recycling by paper industry in South Korea and determines the positive impact on global warming by conserving the world's forests through decreasing pulp wood use. South Korea is one of the leading countries in the world thai recycle papers with a collection rate of 71.8 percent and a recycling rate of 74.4 percent in 2005. Greenhouse gas emission reduction potential in terms of carbon dioxide ($CO_2$) equivalent from paper recycling was assessed scientifically by the use of Life Cycle Assessment (LCA). Three types of papers including newsprint, container-board, and white-board were used for assessment in this study. Results of this study indicate that $CO_2$ emission reduction potential of recycling paper varies according to its types and recycling rates. Greenhouse gas emission reduction factor of 0.74869 $tCO_2$ per ton of recycled paper was derived from this study. In applying this factor. it was found out that the South Korean paper industry reduced GHG emission of around 6,364,550 $tCO_2$ by recycling paper in 2005. With this. the country's paper industry could claim that by recycling in thai particular year. approximately $23.8million\;m^3$ of woods were not harvested and thus 212,500 ha of world's forests were estimated to be saved in that particular year. Overall. it could be concluded that the Korean paper industry was able to reduce $CO_2$ emission and was able to conserve world's forests by its high rates of paper recycling.

A Study on the Reduction of Greenhouse Gas in Container Terminal (컨테이너터미널의 온실가스 저감방안에 관한 연구)

  • Kim, Seon-Gu;Choi, Yong-Seok
    • Journal of Korea Port Economic Association
    • /
    • v.28 no.1
    • /
    • pp.105-122
    • /
    • 2012
  • This paper proposes a fuzzy-based AHP model by which the greenhouse gas reduction for container terminal problem was systematically structured and then evaluated. The model was established by exploiting a fuzzy theory and AHP for capturing the inexactness and vagueness of information. In this study, measurement areas were selected for equipment aspect, operating aspect, and energy aspect. The greenhouse gas reduction is the number one priority in the equipment aspect, operating aspect, energy aspect in order. The analysis result of equipment aspect reveals that the most important element is electrical T/C. The most important element of operating and energy aspect were a container rehandling and a LED lighting. As for the whole priority which conversion weight was applied, the results were shown as follows: an electrical T/C(16.2%) as the first rank: a hybrid Y/T(14.4%) as the second rank: a AMP(10.6%) as the third rank. The result of this study suggests some guidelines for deciding priority of greenhouse gas reduction for container terminal.

An Analysis of Greenhouse Gas Reduction effect of Automotive Engine Re-manufacturing throug Whole Process Analysis (전과정 분석을 통한 자동차엔진 재제조시 온실가스 저감효과 분석)

  • Ji-Hyoung Park;Han-Sol Lee;Yong-Woo Hwang;Young-Chun Kim;Chung-geun Lee
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.43-51
    • /
    • 2023
  • In this research, through LCA analysis, the environmental impact of automotive engine manufacturing and re-manufacturing was analyzed from the perspective of the entire process, and the greenhouse gas reduction effect was calculated based on this. The amount of greenhouse gas emitted from the process of acquiring and manufacturing raw materials for automotive engines is about 3,473 kg for new manufacturing and 872 kg for re-manufacturing. Thus, the amount of greenhouse gas reduction by engaging in re-manufacturing is about 2,601 kg; the analysis shows a reduction effect in each part of the entire process except for the processing stage. As a result of the LCA weighted analysis, the environmental impact of new product manufacturing was found to be 1.07E+03 Eco-point, and it was 2.67E+02 Eco-point for re-manufacturing. The share of GWP(Global Warming Potential) among the six major impact categories(Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Ozone-layer Depletion Potential, Photochemical Oxidant Creation Potential) as high at 99.72%(new manufacturing) and 99.68%(re-manufacturing).

Domestic Greenhouse Gas Reduction Policy (국내 온실가스 감축 정책)

  • Bae, Sung-Ho
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.8-12
    • /
    • 2011
  • For reducing greenhouse gas emissions, the short-term strategy is of existing energy-efficient appliances to facilitate the spread of energy efficiency improvements to improve energy efficiency, energy saving projects that will include investments to enable. R&D is at the core of the long-term strategy. To reduce energy demand, the equipments and processes improved energy efficiency should be developed. In terms of energy supply, the policies for greenhouse gas reduction is to replace fossil fuels by expanding the supply of renewable energy such as solar, wind, geothermal, biomass and nuclear power as nearly zero-emission of greenhouse gas. In terms of energy consumption, measures to reduce greenhouse gas emissions is in line with the policy for efficiency improvement. The buildings & work-site of high-energy consumption in the building & Industry sectors, should implement a policy to strengthening the voluntary agreement on energy-saving facilities and expand to invest in energy saving facilities.

The Relationship between Korea Agricultural Productions and Greenhouse Gas Emissions Using Environmental Kuznets Curve (환경쿠즈네츠곡선을 이용한 한국의 농업 생산과 온실가스 배출의 관계 분석)

  • Kang, Hyun-Soo
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.1
    • /
    • pp.209-223
    • /
    • 2021
  • Purpose - The purpose of this study was to investigate the relationship between Korea agricultural productions and Greenhouse Gas (GHG) emissions based on Environmental Kuznets Curve (EKC) hypothesis. Design/methodology/approach - This study utilized time series data of economic growth, greenhouse gas, agricultural productions, trade dependency, and energy usages. In order to econometric procedure of EKC hypothesis, this study utilized unit root test and cointegration test to check staionarity of each variable and also adopted Vector Error Correction Model (VECM) and Ordinary Least Square (OLS) to analyze the short and long run relationships. Findings - In the short run, greenhouse gas emissions resulting from economic growth show an inverse U-shape relationship, and an increase in agricultural production and energy consumption led to increase in greenhouse gas emission. In the long run, total GHG emissions and CO2 emissions show an N-shaped relationship with economic growth, and an increase in agricultural production has resulted in a decrease in total GHG and CO2 emissions. However, methane (CH4) and nitrous oxide (N2O) emissions showed an inverse U-shape relationship with economic growth, which indicated the environment and production process of agricultural production. Research implications or Originality - Korea agricultural production has different effects on the GHG emission sources, and in particular, methane (CH4) and nitrous oxide (N2O) emissions show to increase as the agricultural production expansions, so policy or technological development in related sector is required. Especially, in the context of the 2030 GHG reduction road-map, if GHG-related reduction technologies or policies are spread, national GHG emission reduction targets can be achieved and this is possible to predict the decline in production in the sector and damage to the related industries.

An Establishment of Greenhouse Gas Information System using Excel Spreadsheets (엑셀 스프레드시트를 활용한 온실가스 정보시스템 구축)

  • Lee, Hae-Jung;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.129-136
    • /
    • 2017
  • Climate change is the biggest environmental issue of our times. A variety of activities to reduce greenhouse gas emissions have been in progress to observe the Kyoto Protocol. Especially, the Energy Target Scheme is created to reduce greenhouse emission with the supervision of Korean government. This includes Green-house Gas Information Systems to promote activities in the private sector to reduce green-house gas emissions, to cut a cost of energy use, and to reduce GHG emissions. Also, the system has calculated the amount of greenhouse gases. Without any additional investment, 2.75% savings are increased over the previous year. In service sector, a cooperation of customers and employees is necessary. A reduction of GHG emissions requires a proper service organization, considering an amount of investment and payback period. Without any additional investment or replacement, employees can save energy easily turning off ventilation systems an hour before employees' departure, installing timers to turn off water purifiers and vending machines after some period of no use. The Green-house Gas Information System is similar to that of Environmental Management System. However, the Excel is the best program to calculate an amount of green-house gas emissions, and to assess for a reduced amount of GHG emissions. A goal of this research is to propose a practical method in the private sector to calculate an amount of green-house gases. The Green-house gas Information System based on Excel spreadsheet gives standards for good evaluation. The greenhouse gas information system establishes and executes the policies and objectives related to greenhouse gas emissions Similar to ISO 14001 environment management system structures, the advantages of using simplified Excel Sheet for calculating GHG emissions and reducing GHG emissions are easy to access.

Nationwide Reduction of Primary Energy and Greenhouse Gas Emission by PMV Control Considering Individual Metabolic Rate Variations in Apartments (아파트 건물에서 재실자 활동량이 고려된 PMV제어에 따른 연간 국가 차원의 1차 에너지 및 온실가스 감축량 분석)

  • Hong, Sung-Hyup;Do, Sung-Lok;Lee, Kwang Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.37-44
    • /
    • 2018
  • In this study, the effects of considering hourly metabolic rate variations for predicted mean vote (PMV) control on the heating and cooling energy and greenhouse gas emission were investigated. The case adopting PMV control taking the hourly metabolic rate into account was comparatively analyzed against the conventional dry-bulb air temperature control, using a detailed simulation technique. Under the assumption that all the apartments in Korea adopt the PMV control incorporating real-time metabolic rate measurements, nationwide reductions of primary energy and greenhouse gas emission were analyzed. As a result, PMV control considering hourly metabolic rate variations is expected to reduce national primary energy by 6.2% compared to conventional dry-bulb air temperature control, corresponding to reduction of 10,342 GWh. In addition, it turned out that 6.6% of tCO2 emission can be reduced by adopting PMV control, corresponding to nationwide reduction of greenhouse gas emission by approximately 1,720,000 tCO2.

Analysis of GHG Reduction Potential on Road Transportation Sector using the LEAP Model - Low Carbon Car Collaboration Fund, Fuel Efficiency, Improving Driving Behavior - (LEAP 모형을 이용한 도로교통부문의 온실가스 감축잠재량 분석 - 저탄소차협력금제도, 연비강화, 운전행태개선을 중심으로 -)

  • Kim, Min wook;Yoon, Young Joong;Han, Jun;Lee, Hwa Soo;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • This study the efficiency of greenhouse gas reduction of 'low carbon car collaboration fund' and its alternative 'control of average fuel efficiency and greenhouse gas', and 'improving driving behavior' were analyzed by using LEAP, long term energy analysis model. Total 4 scenarios were set, baseline scenario, without energy-saving activity, 'low carbon car collaboration fund' scenario, 'fuel efficiency improving scenario', and 'improving driving behavior' scenario. The contents of analysis were forecast of energy demand by scenario and application as well as reduction of greenhouse gas emission volume, and the period taken for analysis was every 1 year during 2015~2030. Baseline scenario, greenhouse gas emission volume in 2015 would be 7,935,697 M/T and 13,081,986 M/T in 2030, increased 64.8%. The analysis result was average annual increase rate of 3.4%. The expected average annual increase rate of other scenarios was, 'low carbon car collaboration fund' scenario 1.7%, 'fuel efficiency improving' scenario 3.0%. and 'improving driving behavior' scenario 3.4%. and these were each 1.7%, 0.3%. 0.3% reduce from baseline scenario. The largest reduction was 'low carbon car collaboration fund' scenario, and there after were 'fuel efficiency improving scenario', and 'improving driving behavior' scenario.