• Title/Summary/Keyword: Greenhouse Gas Inventory

Search Result 150, Processing Time 0.031 seconds

Estimation and Mapping of Methane Emissions from Rice Paddies in Korea: Analysis of Regional Differences and Characteristics (전국 논에서 발생하는 메탄 배출량의 산정 및 지도화: 지역 격차 및 특성 분석)

  • Choi, Sung-Won;Kim, Joon;Kang, Minseok;Lee, Seung Hoon;Kang, Namgoo;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.88-100
    • /
    • 2018
  • Methane emissions from rice paddies are the largest source of greenhouse gases in the agricultural sector, but there are significant regional differences depending on the surrounding conditions and cultivation practices. To visualize these differences and to analyze their causes and characteristics, the methane emissions from each administrative district in South Korea were calculated according to the IPCC guidelines using the data from the 2010 Agriculture, Forestry and Fisheries Census, and then the results were mapped by using the ArcGIS. The nationwide average of methane emissions per unit area was $380{\pm}74kg\;CH_4\;ha^{-1}\;yr^{-1}$. The western region showed a trend toward higher values than the eastern region. One of the major causes resulting in such regional differences was the $SF_o$ (scaling factor associated with the application of organic matter), where the number of cultivation days played an important role to either offset or deepen the differences. Comparison of our results against the actual methane emissions data observed by eddy covariance flux measurement in the three KoFlux rice paddy sites in Gimje, Haenam and Cheorwon showed some differences but encouraging results with a difference of 10 % or less depending on the sites and years. Using the updated GWP (global warming potential) value of 28, the national total methane emission in 2010 was estimated to be $8,742,000tons\;CO_2eq$ - 13% lower than that of the National Greenhouse Gas Inventory Report (i.e., $10,048,000tons\;CO_2eq$). The administrative districts-based map of methane emissions developed in this study can help identify the regional differences, and the analysis of their key controlling factors will provide important scientific basis for the practical policy makings for methane mitigation.

A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Rice Production System in Farming without Agricultural Chemicals

  • Lee, Jong-Sik;Ryu, Jong-Hee;Jeong, Hyun-Cheol;Choi, Eun-Jung;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.374-380
    • /
    • 2014
  • To estimate greenhouse gas (GHG) emission, the inventory of rice cultivation at the farming without agricultural chemicals was established from farmers in Gunsan, Jeonbuk province in 2011~2012. The objectives of this study were to calculate carbon footprint and analyse the major factor of GHGs. To do this, we carried out a sensitivity analysis using the analyzed main factors of GHGs and estimated the mitigation potential of GHGs. Also we suggested agricultural methods to reduce GHGs that can be appled by farmers at this region. At the farming system without agricultural chemicals, carbon footprint of rice production unit of 1 kg was 2.15 kg $CO_2.-eq.kg^{-1}$. Although the amount of carbon dioxide ($CO_2$) emission was the largest among GHGs, methane ($CH_4$) emission had the highest contribution to carbon footprint on rice production system when it was converted to carbon dioxide equivalent ($CO_2-eq.$) multiplied by the global warming potential (GWP). Main source of $CO_2$ emission in the rice farming system without agricultural chemicals was combustion of fossil fuels used by agricultural machinery. Most of the $CH_4$ was emitted during rice cultivation practice and its major emission factor was flooded paddy field in anaerobic condition. Also, most of the $N_2O$ was emitted from rice cultivation process. Major sources of the $N_2O$ emission was application of fertilizer such as compound fertilizer. As a result of sensitivity analysis in energy consumption, diesel had the highest sensitivity among the energy inputs. With the reduction of diesel consumption by 10%, it was estimated that $CO_2$ potential reduction was about 2.0%. With reducing application rate of compound fertilizer by 10%, the potential reduction was calculated that $CO_2$ and $N_2O$ could be reduced by 0.5% and 0.9%, respectively. At the condition of 10% reduction of silicate and compost, $CO_2$ and $CH_4$ could be reduced by 1.5% and 1.6%, respectively. With 8 days more drainage than the ordinary practice, $CH_4$ emission could be reduced by about 4.5%. Drainage and diesel consumption were the main sources having the largest effect on the GHG reduction at the farming system without agricultural chemicals. Based on the above results, we suggest that no-tillage and midsummer drainage could be a method to decrease GHG emissions from rice production system.

Analysis of Environmental Load by Work Classification for NATM Tunnels (NATM터널의 공종별 환경부하 특성 분석)

  • Lee, Ju-hyun;Shim, Jin Ah;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.307-315
    • /
    • 2016
  • Many countries are trying to reduce a greenhouse gas to step up their fight against climate change. There are many studies related to building only for reducing a greenhouse gas in construction area but studies related to reducing a comprehensive environmental load including various pollutants that affects the global environment are lacking. This study aims to analyse the characteristics of environmental load by work type for tunnel projects. Analysis showed that seven work types, including lining concrete, shotcrete, tunnel portal and open-cut tunnel work, etc., are representative works generated environmental load. These seven works represent 89.22 percent of total environmental load. In addition, comparison results of environmental load per tunnel's length by work type showed that a major factor of environmental load is caused by a tunnel portal and open-cut tunnel work with relatively short length (excavation length). And lining concrete and shotcrete work are larger than any other environmental load with tunnel's total length. It is expected that the result of this study will be used to make a estimation model for environmental load using approximate quantity survey of representative work types in the early stage of tunnel design. And it will be play a considerable role in establishing of environment management plan for sustainable infrastructure construction.

Effects of Stand Age Classes on Biomass Expansion Factors and Stem Densities in Chamaecyparis obtusa Plantations (편백 조림지에서 영급이 바이오매스 확장계수와 줄기밀도에 미치는 영향)

  • Lee, Young Jin;Lee, Mi Hyang;Lee, Kyeong Hak;Son, Young Mo;Seo, Jeong Ho;Park, In Hyeop;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.1
    • /
    • pp.50-54
    • /
    • 2006
  • Biomass expansion factors and stem density values were commonly used in converting stand volumes into total carbon stocks for the purpose of national inventories of greenhouse gas emissions and carbon sequestration. The objective of this study was to examine the influence of stand age classes on aboveground and total biomass expansion factors, and stem density values in Chamaecyparis obtusa species. A total of 25 representative sample trees based on the three different stand age classes were destructively sampled to measure green weights and dry weights of the major four(root, stem, branch and foliage) portions of C. obtusa species grown in Jangseung-gun of southern Korea. According to the results of this study, as stand age classes increase, total biomass expansion factors tended to be decreased with the ranges from 3.64 to 1.44, while the stem density values tended to be slightly increased with the ranges from $0.35(g/cm^3)$ to $0.44(g/cm^3)$. There were statistically significant differences in biomass expansion factors and stem density values between stand age classes, but became nearly constant after 30 years old for C. obtusa species. This information could be very useful to improve a national-scaled inventory of greenhouse gas emissions and carbon sequestration for the C. obtusa species by applying different biomass expansion factors and stem density values.

Economic Impacts of Carbon Reduction Policy: Analyzing Emission Permit Price Transmissions Using Macroeconometric Models (탄소감축 정책의 경제적 영향: 거시계량모형에 기반한 배출권가격 변동 효과 분석)

  • Jehoon Lee;Soojin Jo
    • Environmental and Resource Economics Review
    • /
    • v.33 no.1
    • /
    • pp.1-32
    • /
    • 2024
  • The emissions trading system stands as a pivotal climate policy in Korea, incentivizing abatement equivalent to 87% of total emissions (as of 2021). As the system likely has a far-reaching impact, it is crucial to understand how the real economic activity, energy sector, as well as environment would be influenced by its implementation. Employing a macroeconometric model, this paper is the first study analyzing the effects of the Korean emissions trading policy. It interconnects the Korean Standard Industrial Classification (Economy), Energy Balance (Energy), and National Inventory Report (Environment), enhancing its real-world explanatory power. We find that a 50% increase in emission permit price over four years results in a decrease in greenhouse gas emissions (-0.043%) and downward shifts in key macroeconomic variables, including real GDP (-0.058%), private consumption (-0.003%), and investment (-0.301%). The price increase in emission permit is deemed crucial for achieving greenhouse gas reduction targets. To mitigate transition risk associated with price shocks, revenue recycling using auction could ensure the sustainability of the economy. This study confirms the comparative advantage of expanded current transfers expenditure over corporate tax reduction, particularly from an economic growth perspective.

Automatic Classification by Land Use Category of National Level LULUCF Sector using Deep Learning Model (딥러닝모델을 이용한 국가수준 LULUCF 분야 토지이용 범주별 자동화 분류)

  • Park, Jeong Mook;Sim, Woo Dam;Lee, Jung Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1053-1065
    • /
    • 2019
  • Land use statistics calculation is very informative data as the activity data for calculating exact carbon absorption and emission in post-2020. To effective interpretation by land use category, This study classify automatically image interpretation by land use category applying forest aerial photography (FAP) to deep learning model and calculate national unit statistics. Dataset (DS) applied deep learning is divided into training dataset (training DS) and test dataset (test DS) by extracting image of FAP based national forest resource inventory permanent sample plot location. Training DS give label to image by definition of land use category and learn and verify deep learning model. When verified deep learning model, training accuracy of model is highest at epoch 1,500 with about 89%. As a result of applying the trained deep learning model to test DS, interpretation classification accuracy of image label was about 90%. When the estimating area of classification by category using sampling method and compare to national statistics, consistency also very high, so it judged that it is enough to be used for activity data of national GHG (Greenhouse Gas) inventory report of LULUCF sector in the future.

Development of Carbon Neutral Indicator Using Capacity of Carbon Storage on Urban Forest (도시 산림의 탄소저장능을 활용한 탄소중립지표 개발)

  • Lee, Jung-Hwan;Lee, Gwan-Gyu;Hong, Jeong-Kee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.94-102
    • /
    • 2010
  • Carbon Neutral is one of the magnifying pan-governmental tasks which aim for stabilizing pan-global ecosystem. The purpose of this study is to estimates carbon neutral degree in cities by using capacity of carbon storage, which is carbon sinks, on forest and to develop an indicator that could be utilized in establishing policy related to climate change respond. When the carbon emitted from city has been absorbed or stored, the value of the indicator aiming to achieve carbon neutral could be drawn. The result and implication are as follows. First, while the annual amount of carbon emission in Gyeonggi S city was 18,787 thousand (tons), which was the highest, that of Gyeongbuk U city indicated the lowest with approximately 112 thousand (tons). Second, Gyeongbuk U city represented the largest capacity of annual carbon storage with about 16,748 thousand (tons), whereas the smallest figure was shown in Gyeonggi B city with 151 thousand (tons). Third, as result of the estimation of carbon neutral degree, the value of the indicator in Gyeonggi B city was 3% referring the lowest point, while that of other cities demonstrated over 100%. Forth, it has the possibility to suggest the fixed quantity when the plan for achieving carbon neutral of city is being processed. In the near future, after the completion of the construction projects of greenhouse gas inventory in all local governments, by utilizing the relative dates, the value of the indicator can be calculated and a more general conclusion could be drawn. Moreover, as expanding case studies to all domestic cities, generalness is in need.

Synchronization and identification of ship shaft power and speed for energy efficiency design index verification

  • Lee, Donchool;Barro, Ronald Dela Cruz;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.123-132
    • /
    • 2014
  • The maritime sector is advancing with dedicated endeavor to reduce greenhouse gas in addressing issues with regards to global warming. Since 01 January 2013, the International Maritime Organization (IMO) regulation mandatory requirement for Energy Efficiency Design Index (EEDI) has been in place and should be satisfied by newly-built ships of more than 400 gross tonnage and the Ship Energy Efficiency Management Plan (SEEMP) for all ships type. Therefore, compliance to this necessitates planning during the design stage whereas verification can be carried-out through an acceptable method during sea trial. The MEPC-approved 2013 guidance, ISO 15016 and ISO 19019 on EEDI serves the purpose for calculation and verification of attained EEDI value. Individual ships EEDI value should be lower than the required value set by these regulations. The key factors for EEDI verification are power and speed assessment and their synchronization. The shaft power can be measured by telemeter system using strain gage during sea trial. However, calibration of shaft power onboard condition is complicated. Hence, it relies only on proficient technology that operates within the permitted ISO allowance. On the other hand, the ship speed can be measured and calibrated by differential ground positioning system (DGPS). An actual test on a newly-built vessel was carried out to assess the correlation of power and speed. The Energy-efficiency Design Index or Operational Indicator Monitoring System (EDiMS) software developed by the Dynamics Laboratory-Mokpo Maritime University (DL-MMU) and Green Marine Equipment RIS Center (GMERC) of Mokpo Maritime University was utilized for this investigation. In addition, the software can continuously monitor air emission and is a useful tool for inventory and ship energy management plan. This paper introduces the synchronization and identification method between shaft power and ship speed for EEDI verification in accordance with the ISO guidance.

National Accounts and Greenhouse Gas Emissions: The Korea's NAMEA-air (국민계정과 온실가스 배출: 한국의 NAMEA-air 편제)

  • Kim, Jong-Ho;Kim, Hoseok
    • Environmental and Resource Economics Review
    • /
    • v.19 no.4
    • /
    • pp.963-1001
    • /
    • 2010
  • The national accounting matrix including environmental accounts(NAMEA) includes informations on environmental pressures in relation to economic activities as developed in the national accounts. In the NAMEA, conventional national accounts tables have been extended with accounts in physical units. This paper describes the background for work carried out on environmental accounts in Korea and explains how the NAMEA-air is developed. The Korea's NAMEA-air provided here serves several purposes; (1) a consistent and systemic feature of the interrelationship between the economy and the environment; (2) a basis for environmental economic analysis; and (3) the vital information for climate and air policy planning.

  • PDF

Domestic Bituminous Coal's Calorific Value Trend Analysis (2010~2014) and Carbon Emission Factor Development (국내 유연탄의 발열량 추이 분석(2010~2014년) 및 탄소배출계수 개발)

  • Kim, Min wook;Cho, Changsang;Jeon, Youngjae;Yang, Jinhyuk;Sin, Hochul;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.513-520
    • /
    • 2016
  • Korea's energy consumption has been constantly increasing. Final energy consumption was increased by an annual average of 2.9% compared to 2010. The consumption of all energy sources except for its oil was increased during the same time. While electric demand has increased coal consumption increased rapidly. Therefore, calorfic value and carbon emission factor development can improve the quality of Korea's greenhouse gas inventory. Calorific value is the amount of heat generated while burning coal. Caloric value is one of the most important factors in the development of carbon emission factors. Calorific value is used as the basis for the analysis of the various energy statistics. This study has calculated the other bituminous coal and coking coal's calorfic value by the data received from domestic coal-fired power plants and steel manufacturer. Calorofic value's trend analysis period is the year of 2010~2014. Through analyzing the carbon content it was calculated the carbon emission factor. The bituminous coal and coking coal's uncertainty analysis was performed using a Monte Carlo simulation.