• 제목/요약/키워드: Green-house potential

검색결과 75건 처리시간 0.021초

수분(水分) 및 양료(養料) 처리(處理)에 따른 참나무류와 물푸레나무의 생장 및 생리 반응 (Growth Performances and Physiological Responses of Quercus spp. and Fraxinus rhynchophylla Subjected to Different Soil Moisture Regimes and Nutrition Levels)

  • 권기원;이정호
    • 한국산림과학회지
    • /
    • 제83권2호
    • /
    • pp.164-174
    • /
    • 1994
  • 장기간의 수분 및 양료 stress를 받는 다섯 가지 주요 수종의 생리적인 대사 반응을 알아보기 위하여 상이한 토양수분 및 양료 조건의 pot에서 기른 실생묘의 시기적인 생육, 엽록소 함량 및 수분특성의 변화를 조사하였다. 이를 위해 상수리나무, 굴참나무, 신갈나무, 졸참나무 및 물푸레나무 실생묘를 내경 16cm, 깊이 16cm의 프라스틱 용기에 번식시켰다. 이들 묘목은 5월~9월까지 비닐 온실 내에서 건, 습 두가지 토양수분 조건 및 N+P+K 시비, 무시비의 두가지 시비 조건으로 조합 처리하였다. 환경 stress에 대한 반응을 분석하기 위해 5월, 7월, 9월에 묘고, 근원경, 엽록소 함량, P-V curve 모수들을 반복하여 측정했다. 수분 및 양료 부족에 따른 환경 stress는 묘목의 생육에 있어 수종, 생육시기 및 묘고와 근원경 간에 각기 다른 영향을 미쳤다. 상수리나무의 생육은 stress에 보다 예민하게 반응하여 감퇴되었지만 신갈나무는 나머지 수종에 비해 stress에 의한 생육부진 영향이 적었다. 엽록소의 함량은 생육기간 중 일반적으로 물푸레나무에 비해 참나무류에서 더 높은 값을 보였다. 엽록소 중 chlorophyll a의 함량은 0.14~1.96mg/g dry wt., chlorophyll b는 0.16~1.79mg/g dry wt. 내에서 생육기간 중 수종 및 처리 별로 변화했다. 그러나 엽록소 함량은 지속적인 환경 stress와 잎의 노화에 따라 점차 감소되었다. 최대포수상태와 위조점에서의 osmotic potential(${\Psi}{{\pi}o}$, (${\Psi}{{\pi}p}$)은 일부 예외는 있지만 각각 5월의 -7.0~-12.4bars에서 9월의 -10.2~-17.5bars로 3~5bars까지, 또한 5월의 -7.6~-14.2bars에서 9월의 -12.9~-20.4bars로 5~6bars까지 시간이 지나면서 감소했다. ${\Psi}{{\pi}p}$의 값은 일반적으로 5월 및 7월에 물푸레나무에서 높았으나 9월에는 졸참나무에서 높은 값을 보였다. 위조점에서의 상대수분함량 (RWCp)은 일반적으로 물푸레나무에서 높았지만 그 값의 시기적인 변화는 수종이나 처리 조건에 따라 상당한 차이를 보였다.

  • PDF

고추재배에서 토성별 토양수분, 토양온도, 무기태 질소 변화에 따른 온실가스배출 평가 (Evaluation of Green House Gases Emissions According to Changes of Soil Water Content, Soil Temperature and Mineral N with Different Soil Texture in Pepper Cultivation)

  • 김건엽;송범헌;노기안;홍석영;고병구;심교문;소규호
    • 한국토양비료학회지
    • /
    • 제41권6호
    • /
    • pp.399-407
    • /
    • 2008
  • 농경지에서 발생되는 온실가스인 $CH_4$, $N_2O$의 배출제어 기술을 구명하기 위하여 수원시에 위치한 국립농업과학원 기후변화생태과 시험포장에서 온실가스 배출시험을 수행하였다. 고추밭에서 토성과 토양수분에 의한 온실가스배출 시험은 2004~2005년 2년간 고추 재배를 하여, 질소를 시용하지 않는 PK와 NPK+ 돈분퇴비 등으로 시비처리를 하였고 온실가스배출에영향을 주는 토양수분, 토양온도 그리고 무기태 질소($NH{_4}^+$, $NO{_3}^-$) 등 관련 요인별로 온실가스배출량을 측정하였다. 이와 같이 밭에서 온실가스 배출에 미치는 영향을 조사하여 온실가스 관리에 필요한 기초 자료로 활용하기 위해 시험한 결과는 다음과 같다. 1) 토성에 따른 $N_2O$ 배출량은 식양토에 비해 사양토에서 74.0~82.1% 적었고, 토양 수분장력 -30 kPa보다 -50 kPa에서 식양토는 13.2%, 사양토는 40.2%가 적었다. 2) $CH_4$ 배출은 식양토에 비해 사양토에서 45.7~61.6%, 그리고 수분장력에 따라 -30kPa보다 -50kPa에서 식양토 69.6%, 사양토 55.8%가 적었다. 3) $N_2O$ 배출에 영향을 미치는 요인은 식양토에서 무기태질소 (51.2%), 토양온도 (25.8%), 토양수분함량 (23.0%), 그리고 사양토에서는 토양수분함량 (39.3%), 토양온도 (36.4%), 무기태질소 (24.3%) 순으로 나타났으며, 식양토에 비해 사양토에서 $N_2O$ 배출에 대한 무기태질소의 기여도가 낮았다.

항온 배양 논토양 조건에서 비산재 처리에 따른 CH4와 CO2 방출 특성 (Fly Ash Application Effects on CH4 and CO2 Emission in an Incubation Experiment with a Paddy Soil)

  • 임상선;최우정;김한용;정재운;윤광식
    • 한국토양비료학회지
    • /
    • 제45권5호
    • /
    • pp.853-860
    • /
    • 2012
  • 비산재 혼합에 의한 $CH_4$$CO_2$ 방출 저감 가능성을 조사하기 위해 질소 ($(NH_4)_2SO_4$) 무처리구와 처리구를 두고 비산재를 0, 5, 10% 수준으로 혼합한 후 토양 수분 변동조건 (습윤기간, 전이기간, 건조기간)에서 60일간 실험실내 항온배양실험을 통해 $CH_4$$CO_2$ flux를 분석하였다. 전체 항온배양기간 중 평균 $CH_4$ flux는 $0.59{\sim}1.68mg\;CH_4\;m^{-2}day^{-1}$의 범위였으며, 질소 무처리구에 비해 처리구에서 flux가 낮았는데, 이는 질소 처리시 함께 시용된 $SO_4^{2-}$의 전자수용체 기능에 의해 $CH_4$ 생성이 억제되었기 때문으로 판단되었다. 질소 무처리구와 처리구에서 비산재 10% 처리에 의해 $CH_4$ flux가 각각 37.5%와 33.0% 감소하였는데, 이는 물리적인 측면에서 미립질 (실트 함량 75.4%)인 비산재 시용에 의해 통기성 대공극량이 감소되어 $CH_4$ 확산 속도가 저감되었기 때문으로 판단되었다. 또한, 생화학적 측면에서는 비산재의 $CO_2$ 흡착능에 의해 $CH_4$ 생성의 주요 기작 중 하나인 이산화탄소 환원에 필요한 $CO_2$ 공급이 억제된 것도 원인 일 수 있다. 한편, 전체 항온 배양 기간의 평균 $CO_2$ flux ($0.64{\sim}0.90g\;CO_2\;m^{-2}day^{-1}$) 역시 질소 무처리구가 질소 처리구보다 높았다. 이는 일반적으로 질소 시비에 의해 토양 호흡량이 증가한다는 기존의 연구결과와는 상이한데, 본 연구에서 질소 처리에 의해 활성화된 미생물에 의해 $CO_2$ flux 최초 측정 시점 (처리 후 2일째) 이전에 이미 상당한 양의 $CO_2$가 이미 방출되어 실측 flux에 반영되지 못했기 때문으로 설명이 가능했다. $CH_4$과 유사하게 $CO_2$ flux도 비산재무처리구에 비해 비산재 10% 처리구에서 약 20% 감소하였는데, 이는 비산재의 원소 구성 중 Ca과 Mg과 토양수내 탄산이온의 탄산염 ($CaCO_3$$MgCO_3$)화 반응에 의한 $CO_2$ 침전 때문이다. 이상과 같은 비산재 처리에 의한 $CH_4$$CO_2$ flux 감소에 의해 지구온난화지수 역시 비산재 10% 처리구에서 약 20% 감소하였다. 따라서, 비산재는 논 토양에서 $CH_4$$CO_2$ 방출 저감에 효과가 있는 것으로 나타났으며, 실재 벼 재배 포장에서의 실험을 통한 추가적인 검증이 필요하다.

직접분사식 디젤엔진에서 아산화질소의 생성에 관한 실험적 연구 (A Experimental Study on Nitrous Oxide Formation in Direct Injection Diesel Engine)

  • 유동훈
    • 해양환경안전학회지
    • /
    • 제21권2호
    • /
    • pp.188-193
    • /
    • 2015
  • 일반적으로 선박용 디젤엔진의 아산화질소($N_2O$)배출률은 이산화황($SO_2$)배출률과 밀접한 상관성을 갖고 있고, 선박에서 사용되는 연료의 다양성은 $N_2O$배출특성에 영향을 미친다고 받아들여져 왔다. 최근의 연구보고에 의하면 연료 연소에서 발생한 충분한 일산화질소(NO)가 존재할 경우, 배기의 $SO_2$배출률이 $N_2O$생성에 미치는 영향은 NO의 영향보다 막대하게 크다. 그러므로 $SO_2$성분으로부터 기인하는 $N_2O$생성은 NOx저감을 위한 배기가스 재순환(EGR) 시스템에서 중요한 인자로 작용한다. 본 실험적인 연구의 목적은 $SO_2$유량 증가를 갖는 디젤엔진의 흡기가 배기의 $N_2O$배출률에 미치는 영향에 대하여 조사하는 것이다. 실험에 사용된 테스트 엔진은 2600rpm에서 12kW의 출력을 갖는 4행정 직접분사식 디젤엔진이고, 운전조건은 75% 부하에서 실시되었다. 0.499%($m^3/m^3$)의 $SO_2$표준가스는 흡기의 $SO_2$농도를 변화시키기 위해 사용되었다. 결과적으로 황 성분을 포함하지 않는 연료는 $SO_2$를 배출시키지 않았고, 흡기 중에 $SO_2$표준가스의 증가에 따른 배기의 $SO_2$배출률은 $SO_2$흡입률과 비교하여 거의 같은 비율이었다. 또한, 흡기의 $SO_2$유량 상승은 $N_2O$배출률을 상승시켜 배기 중의 $N_2O$는 흡기의 $SO_2$혼합기에 의해 생성되었다. 결국 황 성분을 함유한 연료는 연소 중에 $SO_2$를 형성하고 배기 중의 $N_2O$는 연소실에 존재하는 NO와 $SO_2$의 반응에 의해 발생된다고 할 수 있다.

관개조건(灌漑條件)이 온실재배(溫室栽培) 메론의 수량(收量) 및 품질(品質)에 미치는 영향(影響) (Effect of Irrigation Period on Quality of Melon(Cucumis melo L.))

  • 이경보;김선관;양창휴;류철현;전장협;이두구;소재돈
    • 한국토양비료학회지
    • /
    • 제27권4호
    • /
    • pp.269-274
    • /
    • 1994
  • 하우스내에서 메론 재배시(栽培時) 토양수분(土壤水分)이 넷트메론의 수량(收量) 및 품질(品質)에 미치는 영향(影響)을 구명(究明)코자 관수점(灌水點)을 -0.5bar, 관개시기(灌漑時期)를 전생육기(全生育期), 개화시(開花始)-개화후(開花後) 35일, 개화시(開花始)-개화후(開花後) 20일 및 개화시(開花始)-개화후(開花後) 5일 등으로 처리(處理)하여 증발산량, 생육(生育), 수량(收量) 및 품질(品質) 등을 조사(調査), 분석(分析)한 결과(結果)를 요약(要約)하면 다음과 같다. 1. 처리별(處理別) 관개량(灌漑量)은 전생육기(全生育期) 동안 관개(灌漑)처리 구에서는 170.5mm, 개화시(開花始)부터 개화후(開花後) 35일까지 관개(灌漑)처리 구에서는 145.0mm, 개화시(開花始)부터 개화후(開花後) 20일까지 관개(灌漑)처리 구에서는 126.9mm, 개화시(開花始)부터 개화후(開花後) 5일까지 관개(灌漑)처리 구에서는 78.8mm였으며 관개(灌漑)횟수는 각각 13, 10, 7, 4회 이었다. 2 메론의 전생육기간(全生育期間)동안 증발산량은 5월 : 106.3mm, 6월 : 109.2mm, 7월 : 62.2mm(상순(上旬)과 중순(中旬))였으며 메론의 일(日) 평균(平均) 증발산량은 3.31mm였고 착과(着果)이후 5일부터 15일까지 증발산량이 가장 많았다. 3. 메론의 수량(收量)은 전생육기간(全生育期間) 관개(灌漑)한 구(區)에서 총수량(總收量)이 3,149kg/10a로 높았으나 상품성(商品性) 수량(收量)은 2,299kg/10a로 낮았고, 개화시(開花始)부터 개화후(開花後) 20일까지 관개(灌漑)한 구(區)에서 상품성(商品性) 수량(收量)이 2,520kg/10a로 가장 양호하였다. 4. 당도 및 넷트는 개화시(開花始)-개화후(開花後) 5일까지 관개(灌漑)>개화시(開花始)-개화후(開花後) 20일까지 관개(灌漑)>개화시(開花始)-개화후(開花後) 35일까지 관개(灌漑)>전생육기(全生育期) 관개(灌漑) 순으로 양호하였다.

  • PDF