• Title/Summary/Keyword: Green-house potential

Search Result 75, Processing Time 0.029 seconds

A Preliminary Analysis on the International Management System for the Ocean fertilization with Iron at High Seas (해양 철분 시비(施肥)사업의 국제 관리체제 예비 분석)

  • Hong, Gi-Hoon;Sohn, Hyo-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.138-149
    • /
    • 2008
  • Rapid accumulation of carbon dioxide in the atmosphere for the past century leads to acidify the surface ocean and contributes to the global warming as it forms acid in the ocean and it is a green house gas. In order to curb the green house gas emissions, in particular carbon dioxide, various multilateral agreements and programs have been established including UN Convention of Climate Change and its Kyoto Protocol for the last decades. Also a number of geo-engineering projects to manipulate the radiation balance of the earth have been proposed both from the science and industrial community worldwide. One of them is ocean fertilization to sequester carbon dioxide from the atmosphere through the photosynthesis of phytoplankton in the sea. Deliberate fertilization of the ocean with iron or nitrogen to large areas of the ocean has been proposed by commercial sector recently. Unfortunately the environmental consequences of the large scale ocean iron fertilization are not known and the current scientific information is still not sufcient to predict. In 2007, the joint meeting of parties of the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, 1972 and 1996 Protocol (London Convention/Protocol) has started considering the purposes and circumstances of proposed large-scale ocean iron fertilization operations and examined whether these activities are compatible with the aims of the Convention and Protocol and explore the need, and the potential mechanisms for regulation of such operations. The aim of this paper is to review the current development on the commercial ocean fertilization activities and management regimes in the potential ocean fertilization activities in the territorial sea, exclusive economic zone, and high seas, respectively, and further to have a view on the emerging international management regime to be London Convention/Protocol in conjunction with a support from the United Nations General Assembly through The United Nations Open-ended Informal Consultative Process on Oceans and the Law of the Sea.

  • PDF

The Effect of Soil Moisture Stress on the Growth of Barley and Grain Quality (토양수분 스트레스가 보리생육 및 종실품질에 미치는 영향)

  • Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • To determine the effect of soil moisture stress on growth of barley and grain quality, a pot experiment was carried out for two barley varieties(Olbori and Chogangbori) by using large plastic pot(52cm in diameter and 55cm in depth) filled with sandy loam soil under rain-controlled open green house. By means of measuring soil water potential with micro tensiometer and gypsum block installed at 10cm in soil depth, soil moisture was controlled by sub-irrigation at several irigation points such as -0.05bar, -0.2bar, -0.5bar, -1.0bar, -5.0bar and -10.0bar in soil water potential. The lower soil water potential was controlled, the shorter length of stem and internode became, and the more narrow stem diameter was. Leaf area was significantly decreased when soil water potential was controlled lower than -0.5bar, although chlorophyll content of flag and first leaves was not changed so much. Weight of grain and ear was significantly decreased when soil water potential was lower than -5.0bar and the highest grain yield was obtaind in a plot where soil water potential was controlled at -0.2bar. However, the most efficient water use of Olbori and Chogangbori was obtained at -0.5bar and -1.0bar in water potentials, respectively. Crude protain content, maximum viscosity, consistency and ${\beta}$-glucan content of barley flour increased as soil water potential significantly decreased, especially below -5.0bar, but gelatination temperature decreased as soil water potential decreased.

  • PDF

Characterization of Area Installing Combined Geothermal Systems : Hydrogeological Properties of Aquifer (복합지열시스템에 대한 부지특성화: 대수층의 수리지질학적 특성)

  • Mok, Jong-Koo;Park, Yu-Chul;Park, Youngyun;Kim, Seung-Kyum;Oh, Jeong-Seok;Seonwoo, Eun-Mi
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.293-304
    • /
    • 2017
  • This study was performed in order to hydrogeological analysis of aquifer, which is a necessary part for evaluating the efficiency of the combined well and open-closed loops geothermal (CWG) systems. CWG systems have been proposed for the effective utilization of geothermal energy by combining open loop geothermal systems and closed loop geothermal systems. Small aperture CWG systems and large aperture CWG systems were installed at a green house land with water curtain facilities in Chungju City. Aquifer tests include pumping tests and step-drawdown tests were conducted to analyse hydrogeological characteristics of aquifer in the study area. The transmissivity was estimated in the range of $13.49{\sim}58.99cm^2/sec$, and the storativity was estimated in the range of $1.13{\times}10^{-5}{\sim}5.20{\times}10^{-3}$. The geochemical analysis showed $Ca^{2+}$ ion and ${HCO_3}^-$ ion were dominant in groundwater. The Langelier Saturation Index and the Ryznar Stability Index showed low scaling potential of groundwater. In the analysis of vertical water temperature change, the geothermal gradient was estimated as $2.1^{\circ}C/100m$, which indicated the aquifer was enough for geothermal systems. In conclusion, groundwater is rich, can stably use geothermal heat, and it is less likely to cause deterioration of thermal energy efficiency by precipitation of carbonate minerals in study area. Therefore, the study area is suitable for installation of the combined geothermal system.

N-phenyl Substitutent Effect on the Herbicidal Activity of 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide Derivatives against Rice Plant with Pre- and Post-emergence (발아 전 후 벼의 약해에 미치는 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide 유도체들 중 N-phenyl치환기의 효과)

  • Lee, Sang-Ho;Ryu, Jae-Wook;Woo, Jae-Chun;Koo, Dong-Whan;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.52-56
    • /
    • 2000
  • The influence of the 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenyl- propionamide derivatives on the herbicide activities against rice plant with pre-emergence and post-emergence in down land were examined and the structure activity relationship (SAR) were analyzed by Free-Wilson and Hansch method. In pre-emergence, the SAR approach is shown that the optimal, $({\pi})_{opt}=0.91$, hydrophobicity with electron donating effect of the ortho substituted mono substituents and 2,3,4-substituted three substituents were found to be contribute the herbicidal activity. Whereas, in post-emergence, the optimal, ({\pi})_{opt}=0.50$, hydrophobicity with electron withdrawing effect of meta substituted mono subsituents and 2,3-substituted two substituents were found to be contribute the herbicide activity. The herbicide activities with post-emergence more increase than that of pre-emergence. It is assumed from the SAR equations that the 2-methyl-3-methoxy-4-cyano group substituent is selected as the most lowest herbicide activity against rice plant with post-emergence in green house. The hydrolysis reaction was proceeded through nucleophilic addition-elimination (Ad_{Nu-E})$ with the orbital control between LUMO of substrate and HOMO of water molecule. And molecular electrostatic potential (MEP) of none (H) substituent was discussed.

  • PDF

Estimation of Greenhouse Gas Reduction Potential by Treatment Methods of Excavated Wastes from a Closed Landfill Site (사용종료매립지(使用終了埋立地) 폐기물(廢棄物)의 처리방법별(處理方法別) 온실(溫室)가스 저감량(低減量) 평가(評價))

  • Lee, Byung-Sun;Han, Sang-Kuk;Kang, Jeong-Hee;Lee, Nam-Hoon
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • This study was carried out to estimate greenhouse gas reduction potentials under treatment methods of combustible wastes excavated from closed landfill. The treatment methods of solid wastes were landfilling, incineration, and production of solid recovery fuel. The greenhouse gas reduction potentials were calculated using the default emission factor presented by IPCC G/L method of IPCC (Intergovernmental Panel on Climate Change). The composition of excavated waste represented that screened soil was the highest (65.96%), followed by vinyl/plastic (19.18%). This means its own component is similar to the other excavated waste from unsanitary landfill sites. Additionally, its bulk density was 0.74 $t/m^3$. In case of landfilling of excavated waste, greenhouse gas emission quantity was 60,542 $tCO_2$. In case of incineration of excavated waste, greenhouse gas emission quantity was 9,933 $tCO_2$. However, solid recovery fuel from excavated waste reduced 33,738 $tCO_2$ of the greenhouse gas emission quantity. Therefore, solid recovery fuel production is helpful to reduce of greenhouse gas emission.

Environmental Analysis of Waste Cable Recycling Process using a Life Cycle Assessment Method (전과정평가기법을 활용한 폐전선 재자원화 공정의 환경성 평가)

  • Jang, Mi-Sun;Seo, Hyo-Su;Park, Hee-Won;Hwang, Yong-Woo;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • The development of the electrical, electronic, and telecommunication industries has increased the share of electricity in total energy consumption. With the enforcement of the Act on the Promotion of the Development, Use, and Diffusion of New and Renewable Energy in 2021, the mandatory supply ratio of new and renewable energy is expected to expand, and the amount of waste cables generated in the stage of replacing and discarding cables used in the industry is also expected to increase. The purpose of this study was to quantify the environmental burden of waste cable recycling through the life cycle assessment (LCA) method. The results showed that the higher the amount of glue contained in the waste cable, the greater was the amount of fine dust and greenhouse gases generated. In addition, by assigning weights to 10 environmental burden items, it was confirmed that the marine aquatic eco-toxicity potential (MAETP) and human toxicity potential (HTP) had the greatest environmental burden. The main causes were identified as heptane and ethanol, which were the glue contained in the waste cable and the cleaning solutions used to remove them. Therefore, it is necessary to refrain from using glue in the cable production process and reduce the environmental burden by reducing the use of waste cable cleaning solutions used in the recycling process or using alternative materials.

Physiological Responses of Rhododendron mucronulatum and R. indicum with Shading Treatment in Autumn Season (가을철 차광 처리에 따른 진달래와 영산홍의 생리적 반응)

  • Lee, Kyung-Jae;Song, Ki-Sun;Chung, Young-Suk;Yoon, Taek-Seong;Hong, Sung-Kwon;Kim, Jae-Hyun;Lee, Sang-Woo;Kim, Jong-Jin
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.403-408
    • /
    • 2010
  • This study was carried out to investigate the physiological responses of $Rhododendron$ $mucronulatum$ Turcz. and $R.$ $indicum$ (L.) Sweet seedlings with 0%, 35%, 55% and 75% shading of full sunlight in polyethylene film house. The shading treatments were performed during the late growth season for each species (from Sept. 9 to Nov. 5, 2008). The shading treatment was effective in reducing the daily temperature by 0.9 to $1.7^{\circ}C$ during September and by 0.8 to $1.7^{\circ}C$ during October. Before the shading treatments, the water content of $R.$ $mucronulatum$ and $R.$ $indicum$ amounted to 68.5% and 66.3%, respectively. The water contents of two species after 75% shading treatment period decreased to 66.2% (3.4% reduction) and 65.9% (0.6% reduction), respectively. Notably, both species had a similar tendency indicating less reduction rate of water content with 75% shading. $R.$ $indicum$ showed higher photosynthetic capacity with higher level of shading, and its photosynthetic capacity reached the highest level ($9.63{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). On the other hand, shading-treated $R.$ $indicum$ showed higher intercellular $CO_2$ concentration, stomatal conductance and transpiration rate (55% shading > 35% shading > 75% shading) than non-treated ones. In addition, non-treated seedlings showed higher water use efficiency than treated ones. In particular, it was found that the leaf color of $R.$ $mucronulatum$ turned equivalent to purple under full sunlight, while its leaf color kept equivalent more to green with higher level of shading, as evidenced even in naked eyes. According to comprehensive analysis using Munsell Color Chart on potential leaf color variations of $R.$ $mucronulatum$ depending on the level of shading, it was found that relatively many leaf colors under full sunlight were equivalent to R (red) and Y (yellow) chart, while relatively many leaf colors with higher level of shading were equivalent to G (green) and Y chart, where the latter still showed green color.

Assessment of Green House Gases Emissions using Global Warming Potential in Upland Soil during Pepper Cultivation (고추재배에서 지구온난화잠재력 (Global Warming Potential)을 고려한 토성별 온실가스 발생량 종합평가)

  • Kim, Gun-Yeob;So, Kyu-Ho;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.886-891
    • /
    • 2010
  • Importance of climate change and its impact on agriculture and environment have increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere, which caus an increase of temperature in Earth. Greenhouse gas emissions such as carbon dioxide ($CO_2$), methane ($CH_4$) and nitrous oxide ($N_2O$) in the Upland field need to be assessed. GHGs fluxes using chamber systems in two upland fields having different soil textures during pepper cultivation (2005) were monitored under different soil textures at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city, Korea. $CO_2$ emissions were 12.9 tonne $CO_2\;ha^{-1}$ in clay loam soil and 7.6 tonne $CO_2\;ha^{-1}$ in sandy loam soil. $N_2O$ emissions were 35.7 kg $N_2O\;ha^{-1}$ in clay loam soil and 9.2 kg $N_2O\;ha^{-1}$ in sandy loam soil. $CH_4$ emissions were 0.054 kg $CH_4\;ha^{-1}$ in clay loam soil and 0.013 kg $CH_4\;ha^{-1}$ in sandy loam soil. Total emission of GHGs ($CO_2$, $N_2O$, and $CH_4$) during pepper cultivation was converted by Global Warming Potential (GWP). GWP in clay loam soil was higher with 24.0 tonne $CO_2$-eq. $ha^{-1}$ than that in sandy loam soil (10.5 tonne $CO_2$-eq. $ha^{-1}$), which implied more GHGs were emitted in clay loam soil.

Priority Decision of Small Hydropower Development using Spatial Multi-Criteria Decision Making (공간 다기준의사결정을 활용한 소수력 개발의 우선순위 결정)

  • Kim, Gil-Ho;Yi, Choong-Sung;Yeo, Gyu-Dong;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1029-1038
    • /
    • 2009
  • Recently, it is expected that small hydropower (SHP) could potentially provide sufficient amounts of alternative energy in Korea where there is an abundance of potential sites and where social efforts are being made to reduce the emissions of green house gases. In the past, the resources survey for SHP development has been carried out using onsite surveys and paper maps, which incurred a great deal of time and cost. Furthermore, the tools for decision making such as determining development priorities or evaluating feasibility have been considered only economic aspect and focused on the performance characteristics of power generation. However, as the concept of sustainable development has been being advanced in recent years, especially focused on human-social, environmental and ecological in addition to economical sector; the consideration of these multiple criteria has become essential for sustainable SHP development. This study aims to propose the spatial multi-criteria decision making (MCDM) methodology for determining priorities among a number of locations on the planning stage of SHP development using AHP and GIS. The proposed methodology is applied for determining development priorities among the SHP locations in Cho River basin and this study presents the detailed spatial information data and the results of development priorities. As a fundamental work, this study will be beneficial to the future activation of SHP development and will help the decision making in evaluating the feasibility of SHP development.

Effect of Essential Oils and Paraffin Oil on Black Cutworm, Agrotis ipsilon (Lepidoptera: Noctuidae) (식물정유와 파라핀오일이 검거세미나방에 미치는 영향)

  • Lee, Dong Woon;Potter, D.A.
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.62-69
    • /
    • 2013
  • The black cutworm, Agrotis ipsilon (Hufnagel), damages various cultivated crops and it can also be a serious pest of turfgrass, especially on golf courses. Essential oils have potential as alternative control agents for insect pests. Sixteen essential oils (anise, camphor, cinnamon, citronella, clove, fennel, geranium, lavender, lemongrass, linseed, neem, peppermint, pine, thyme, turpentine and tea saponin) and paraffin oil were assessed in the laboratory, the green house and field trials for their efficacy against black cutworms in turf. Treatment of potted cores of perennial ryegrass turf with anise, cinnamon, neem, paraffin or turpentine reduced black cutworm damage in a greenhouse trial, and in a similar trial, applying neem oil at 4000, 2000 and 1000 ppm resulted in 100, 100 and 64% mortality, respectively, of black cutworms. Weight of survivors at the 1000 ppm rate was 5- fold less than weight of comparably-aged controls. Neem oil (2000 ppm) reduced growth of black cutworms feeding on treated clippings. A high rate of neem oil followed by irrigation (0.1 L of 20000 ppm neem oil with 0.9 L watering/$m^2$) was more effective than a lower concentration (1 L of 2000 ppm neem oil/$m^2$) against $2^{nd}$ and $3^{rd}$ instars in potted turf cores and field plots, respectively. However, not even the aforementioned higher rate effectively controlled $4^{th}$ instars in the field.