• Title/Summary/Keyword: Green manure crop

Search Result 213, Processing Time 0.028 seconds

Comparison of Carbon Sequestration Potential of Winter Cover Crop Cultivation in Rice Paddy Soil

  • Lee, Seul-Bi;Haque, Mozammel;Pramanik, Prabhat;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.234-242
    • /
    • 2011
  • BACKGROUND: Cultivation of winter cover crops is strongly recommended to increase land utilization efficiency, animal feeding material self-production, and to improve soil and environmental quality. METHODS AND RESULTS: Four major winter crops (barley, Chinese milk vetch, hairy vetch, and rye) having different C/N ratio were seeded in silt loam paddy soil in the November 2007 and the aboveground biomass was harvested on the late May 2008 to evaluate its effectiveness as green manure, and root biomass distribution was characterized at the different depth (0-60 cm) to study its effect on physical properties and carbon sequestration in soil. During this experiment, the naturally growing weed in the rice paddy soil in Korea, short awn foxtail (Alopecurus aequalis Sobol), was considered as control treatment. Above-ground biomass of all cover crops selected was significantly higher than that of the control treatment (2.8 Mg/ha). Comparatively higher above-ground biomass productivity of rye and barley (15.8 and 13.5 Mg/ha, respectively) suggested that these cover crops possibly had the highest potential as a green manure and animal feeding material. Root biomass production of different cover crops followed the same trend as that for their above ground biomass. Rye (Secale cereal) might have the highest potential for soil C accumulation (7893 C kg/ha) by root biomass development, and then followed by barley (6985 C kg/ha), hairy vetch (6467 C kg/ha), Chinese milk vetch (6671 C kg/ha), and control (5791 C kg/ha). CONCLUSION(s): Cover crops like rye and barley having high biomass productivity might be the most effective winter cover crops to increase organic carbon distribution in different soil aggregates which might be beneficial to improve soil structure, aeration etc. and C sequestration.

Effects of Animal Manure Compost, Tillage Method and Crop System on Soil Properties in Newly Organic Corn Cultivation Field (신규 유기농 옥수수 재배 시 가축분 퇴비, 경운방법 및 작부체계가 토양 환경에 미치는 영향)

  • An, Nan-Hee;Lee, Sang-min;Cho, Jung-Rai;Nam, Hong-Sik;Jung, Jung-A;Kong, Min-jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.31-43
    • /
    • 2018
  • This study was conducted to investigate the effects of organic farmland soil and nutrient management on soil properties depending on organic (animal manure compost and green manure [hairy vetch]) and chemical fertilization, tillage and no-tillage, and crop rotation (corn-wheat, corn-.hairy vetch). It was found that the application of organic matter such as animal manure compost and hairy vetch, increased the soil organic matter content, the soil microbial density and microbial biomass C content as compared with the chemical fertilizer treatment. It was also confirmed that the functional diversity of soil microbial community was increased. As a result of the comparison with the crop rotation and single cropping, the soil chemistry showed no significant difference between the treatments, but the corn-wheat and corn-hairy vetch rotation treatments tended to have higher microbial biomass C content and shannon's diversity index than the single cropping. Soil chemical properties of tillage and no-tillage treatments showed no significant difference between treatments. There was no statistically significant difference in substrate utilization of soil microbial community between tillage and no-tillage treatment. Correlation analysis between soil chemical properties and soil microbial activity revealed that soil organic matter content and exchangeable potassium content were positively correlated, with statistical significance, with substrate utilization, and substrate richness. To conclude, organic fertilization had positive effects on the short-term improvement of soil chemical properties and diversity of microbial communities.

Behavior of Nitrogen Released from Chinese Milk Vetch in Paddy Soil by Using Stable 15N Trace (논토양 중 자운영 환원에 의한 질소의 동태 구명)

  • Lee, Chang Hoon;Jung, Ki Youl;Kim, Sun Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1094-1099
    • /
    • 2012
  • Green manure cultivation affects soil productivity and nutrient conservation in paddy soil at winter season. This study was to evaluate nitrogen behavior released from chinese milk vetch (CMV) as green manure by using stable $^{15}N$ trace during rice cultivation. The CMV used in the experiment was 29.9 of C/N ratio and 14.1 g N $kg^{-1}$ ($^{15}N$ 0.388 atom % excess) and was applied at rates of 10 and $30Mg\;ha^{-1}$ in pot of 1/2000a size. Rice growth and N uptake increased with higher levels of CMV application at harvesting stage. Among total N uptake, 14.6 and 26.8 % of nitrogen was released respectively from the two different rates of CMV application. Stable $^{15}N$ recovery by rice biomass was 60%, 54% to the $^{15}N$ input, respectively, of CMV application, which decreased in order of grain, root, and straw of rice biomass. Total N content in the soil after rice harvest was 1.9 and 2.1 g N $kg^{-1}$, respectively, with increasing N input by the different rates of CMV application and the rate of $^{15}N$ recovery derived from CMV in the soil was 3.8 and 4.8 %, respectively. N input by CMV application induced rice growth and productivity during rice cultivation. However, it might need proper managements to reduce N loss because about 36-41 % of nitrogen was lost from N input by CMV application.

Valuable Organic Liquid Fertilizer Manufacturing through $TAO^{TM}$ Process for Swine Manure Treatment

  • Lee, Myung-Gyu;Cha, Gi-Cheol
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.45-56
    • /
    • 2003
  • $TAO^{TM}$ System is an auto-heated thermophilic aerated digestion process using a proprietary microbe called as a Phototropic Bacteria (PTB). High metabolic activity results in heat generation, which enables to produce a pathogen-free and digested liquid fertilizer at short retention times. TAO$^{TM}$ system has been developed to reduce a manure volume and convert into the liquid fertilizer using swine manure since 1992. About 100 units have been installed and operated in Korean swine farms so far. TAO$^{TM}$ system consists of a reactor vessel and ejector-type aeration pumps and foam removers. The swine slurry manure enters into vessel with PTB and is mixed and aerated. The process is operated at detention times from 2 to 4 days and temperature of 55 to $65^{\circ}C$. Foams are occurred and broken down by foam removers to evaporate water contents. Generally, at least 30% of water content is evaporated, 99% of volatile fatty acids caused an odor are removed and pathogen destruction is excellent with fecal coliform, rotavirus and salmonella below detection limits. The effluent from TAO$^{TM}$ system, called as the "TAO EFFLUX", is screened and has superb properties as a fertilizer. Normally N-P-K contents of screened TAO Efflux are 4.7 g/L, 0.375 g/L and 2.8 g/L respectively. The fertilizer effect of TAO EFFLUX compared to chemical fertilizer has been demonstrated and studied with various crops such as rice, potato, cabbage, pumpkin, green pepper, parsley, cucumber and apple. Generally it has better fertilizer effects and excellent soil fertility improvement effects. Moreover, the TAO EFFLUX is concentrated through membrane technology without fouling problems for a cost saving of long distance transportation and a commercialization (crop nutrient commodity) to a gardening market, for example.

  • PDF

Growth Characteristics and Ginsenoside Contents of 4 Years Old Korean Ginseng (Panax ginseng C.A. Meyer) by Shade Materials and Green Manure Crops (해가림자재 종류와 녹비작물 재배에 따른 4년생 인삼의 생육과 진세노사이드 함량)

  • Seong, Bong-Jae;Kim, Sun-Ick;Lee, Ka-Soon;Kim, Hyun-Ho;Won, Jun-Yeon;So, Jung D.;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.4
    • /
    • pp.504-509
    • /
    • 2015
  • This research carried out to figure out the effect of the green manure crop cultivated at a preparation field and the shading net on the growth, development, and quality of ginseng. Followings are results obtained from the research. Leaf width of ginseng under the shading net of a two-layered blue and two-layered black polythylene net (TBTBPN) was good at rye and hairy vetch cultured group. Leaf length of ginseng under the shading net of a three-layered blue and one-layered black polyethylene net (TBOBPN) was good at barley and hairy vetch cultured group. Meanwhile, leaf width was good at hairy vetch cultured group. Leaf length of ginseng under a blue polyethylene sheet (BPS) was good at a barley and barley + hairy vetch cultured group, but stem length was shorter compare to other shading net cultivations. Root weight of ginseng was good under the shading net of a two-layered blue and two-layered black polyethylene net (TBTBPN) at a rye and hairy vetch cultured group, and was good under the shading net of a three-layered blue and onelayered black polyethylene net (TBOBPN) at a barley + hairy vetch cultured group, but there was no significant difference under blackout screen according to manure crop varieties. Ratio of rusty root was 10.2% at the barley cultured group under the shading net of a two-layered blue and two-layered black polyethylene net (TBTBPN), and was 23.1% at hairy vetch cultured group under shading net of a three-layered blue and one-layered black polyethylene net (TBOBPN). Ratio of rusty root was the lowest at a rye cultured group regardless the shading nets. Content of the ginsenoside was the highest at the rye cultured group under the shading net of two-layered blue and two-layered black polyethylene net (TBTBPN), was the highest at the barley cultured group under the shading net of a three-layered blue and one-layered black polyethylene net (TBOBPN), and was the highest at the rye cultured group under the blackout screen.

Sustenance and Enhancement of Soil Fertility for Organic Farming by Legumes and Green Manure (두과.녹비작물 재배를 통한 유기농법 토양비옥도의 유지와 증진)

  • 장경란;손상목
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.2
    • /
    • pp.97-110
    • /
    • 2000
  • An organic agriculture should be managed by mixed farming in farm unit as a closed recycling system. Due to restricted purchased of fertilizers from outside, organic farmer has to deal with limited amount of nutrient source in farm unit. Especially the supply of the essential nutrient, nitrogen, mostly depends on legumes fixing nitrogen optimizing the site-adapted crop rotation. Dynamics of humus and metabolic plant carbon and active soil carbon compartment in active and passive humuspool by rotation system was explained, and dynamics of potentially mineralizable nitrogen in organic nitrogen and biomass was discussed. It was also discussed comparison of ammonia emission, potential greenhouse effect, primary energy input, acidification potential, CO2 emission between organic and conventional farming, the nitrate-nitrogen dynamic in the soil profile by organic, integrated and conventional farming system. In conclusion, it was suggested for Korean Organic Agriculture that the importance of legumes and green manures in rotation system for increase/maintenance of soil ferfility, and was pointed out the need of investment for environment impact of Korean organic farming implement.

  • PDF

Present Status and Future Prospect of Environment Agriculture in Daeho Reclain ed Saline Area (대호간척지의 환경농업 추진현황과 발전방향)

  • Chae Je-Cheon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2001.09a
    • /
    • pp.72-90
    • /
    • 2001
  • Environment agriculture carried out from 1999 in Daeho reclaimed saline area, located in central east cost of Choongnam Korea, resulted in dramatic reduction of amount of nitrogen fertilizer and application times and amount of pesticides. The ecological status of Daeho reclaimed saline area was considered to still very sound from the results of ecological survey on flora and fauna. However, it was desirable to adapt precision agriculture for production of high eating quality of rice and preservation of Daeho ecosystem. Especially, precise application of nitrogen and phosphorus fertilizer was recommendable for prevention of water pollution in environment rice cultivation by duck or mud snail or crab. The bioefficacy of Scirpus maritimus and Echinochloa crus-galli in paddy field of environment rice cultivation by duck or mud snail or crab in Daeho reclaimed saline area was revealed very low. Therefor, it was concluded that the pre-measures of reduction of natural weed population were necessary for successful environment agriculture. The most desirable and ideal environmentally sound agriculture in Daeho reclaimed saline area was performance of crop rotation, introduction of legume crops and green manure crops, and also, simultaneous management of crop production and animal husbandry for smooth flow of energy cycle within the closed Daeho ecosystem.

  • PDF

Effects of Application of Liquid Pig Manure on Green Manure Crop Triticale and Subsequent Soil Quality (돈분액비 시용이 트리티케일 생육과 토양의 화학적 특성에 미치는 영향)

  • Lee, Byung-Jin;Kim, Kyeong-Mok;Chun, Hyun-Sik;Jeon, Seung-Ho;Cho, Young-Son
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.2
    • /
    • pp.293-302
    • /
    • 2014
  • As part of the agricultural natural circulation, the present study was performed. Recently, there has been the movement toward reusing the Liquid Pig Manure as an alternative fertilizer sources for agricultural lands. For instance, LPM (Liquid Pig Manure) liquid fertilizer has been developed and widely used in Korea. However, the impacts of LPM on both agricultural environment and crop triticale yield have not been investigated yet. The experiments were studied on paddy field after treatment of LPM on plant height, root length, plant length, dry matter yield and soil chemical properties. The effect of LPM by application on triticale was more increased plant height, root length and plant length than the Control. Chemical soil characteristics were not significantly different between on Control and LPM. Soil pH, OM, TN, $P_2O_5$ and exchangeable cation of triticale (X Triticosecale wittmack) appeared to be lower than before the treatment. Dry matter yield were produced 834.3kg $10a^{-1}$ of in LPM plot and 684.4kg $10a^{-1}$ in Control plot. In these results show abbreviated as the application of LPM increases the yield index of triticale. However, the properties of paddy soil were not affected by the LPM application.

Green Manuring Effect of Pure and Mixed Barley-Hairy Vetch on Rice Production (보리-헤어리베치 단파 및 혼파가 벼 수량에 미치는 영향)

  • Kim, Tae-Young;Kim, Song-Yeob;Alam, Faridul;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.268-272
    • /
    • 2013
  • BACKGROUND: The mixtures of legumes and non legumes can be an efficient tool to combine the benefit of the single species in the cover crop practice. However, there is a lack of information on how the species proportion may affect N accumulation and how this can influence the nitrogen use of subsequent rice production. METHODS AND RESULTS: In this study barley and hairy vetch was selected as a green manure. The pure stands or mixtures with different seeding ratios was tested on green manure N accumulation and its following rice cultivation. Total aboveground biomass and N accumulation of mixture were higher compared to that of pure barley and hairy vetch. Among the mixtures, the highest aboveground biomass (8.07 Mg/ha) and N accumulation (131 kg/ha) was observed in B75H25 (barley 75% + hairy vetch 25%). The N accumulation of the mixture ranged from 99 kg/ha to 131 kg/ha which was much higher than amount of recommended (90 kg/ha) for rice. All mixture (barley 75%+hairy vetch 25%, barley 50%+hairy vetch 50%, barley 25%+hairy vetch 50%) produced 7-8% more rice yield than the conventional cultivation (NPK). The rice yield of in barley monocrop was 4% less than that of NPK. COLCLUSION(S): Adopting mixtures of barley and hairy vetch could be efficient strategy for rice production as an alternative of nitrogen fertilizer.