• Title/Summary/Keyword: Green composites

Search Result 163, Processing Time 0.025 seconds

Synthesis and Characterization of Silica/Polystyrene Composite Nanoparticles by in situ Miniemulsion Polymerization (In situ 미니에멀젼중합에 의한 실리카/폴리스타이렌 복합체 나노입자의 합성과 특성)

  • Patole, Archana S.;Patole, S.P.;Song, Mi-Hyang;Yoon, Joo-Young;Kim, Jin-Hwan;Kim, Tae-Ho
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • New coupling agent or surface modified agent (9-decenoic acid) was used to enhance the compatibility between silica and polystyrene in silica/polystyrene hybrid nanocomposite, synthesized by in situ miniemulsion polymerization. Composites contain well dispersed nanosize silica particles. Related tests and analyses confirmed the success of synthesis. Functionalization of silica by 9-decenoic acid and silica on the polystyrene was confirmed by FTIR. TGA showed presence and amount of silica in final latex. The glass transition temperature of the hybrid nanocomposite was increased with the silica amount. SEM and TEM analysis showed the spherical morphology of PS and composite with an average diameter of 55 nm. The presence of silica within composite was confirmed by EDS attached to the existing TEM.

Impact Resistance Characteristics of Cementitious Composites Subjected to High-velocity Projectiles with Reinforcement Types (고속 발사체와 충돌한 시멘트복합체의 보강재 종류에 따른 내충격 특성 연구)

  • Seok, Won-Kyun;Kim, Young-Sun;Lee, Yae-Chan;Nam, Jeong-Soo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.261-272
    • /
    • 2023
  • This research concentrates on the potential explosion hazards that could arise from unforeseen accidents in the rapidly proliferating hydrogen refueling stations and Energy Storage System(ESS) facilities. It underscores the pivotal role of structural protection technology in alleviating such risks. The research contributes primary data for the formulation of structure protection design by assessing the impact resistance across various reinforcement techniques used in cement composites. The experimental results elucidate that reinforced concrete, serving as the quintessential structural material, exhibits a 20% advancement in impact resistance in comparison to its non-reinforced counterpart. In situations typified by rapid loads, such as those seen with high-velocity impacts, the reinforcement of the matrix with fibers is demonstrably more beneficial than local reinforcement. These insights accentuate the importance of judiciously choosing the reinforcement method to augment impact resistance in structural design.

An Improved Manufacturing Method of p-Dicyclopentadiene (DCPD) using Tungsten Type Catalyst in Air Condition (대기 조건에서 경화가 가능한 텅스텐계 p-DCPD의 개선된 성형 방법)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.216-222
    • /
    • 2016
  • Ring-opening metathesis polymerization of p-dicyclopentadiene (DCPD) can be performed using the tungsten type catalyst. This reaction usually progresses in nitrogen condition, because the catalysts are extremely sensitive in air condition. To solve this problem, DCPD resin with tungsten (W) was cured using hot press after stirring of DCPD A and B liquid in air condition. Mechanical properties of DCPD were improved by reducing microvoid occurrence successfully by using hot press method. It might be because hot press could provide sufficient press on DCPD specimen. Addition of catalyst was not effective for the curing of resin in a short time. During polymerization, pressure and temperature had a great influence on the mechanical properties of DCPD.

Hydrophobicity and Adhesion of SiO2/Polyurethane Nanocomposites Topcoat for Aircraft De-icing with Different Pre-curing Time (선경화 시간에 따른 항공기 De-icing용 나노실리카/폴리우레탄 복합재료 탑코트의 소수성 및 접착특성 평가)

  • Kim, Jong-Hyun;Shin, Pyeong-Su;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.365-370
    • /
    • 2020
  • The icing formation at aircraft occur problems such as increasing weight of the body, fuel efficiency reduction, drag reduction, the error of sensor, and etc. The viscosity of polyurethane (PU) topcoat was measured at 60℃ in real time to set the pre-curing time. SiO2 nanoparticles were dispersed in ethanol using ultra-sonication method. The SiO2/ethanol solution was sprayed on PU topcoat that was not cured fully with different pre-curing conditions. Surface roughness of SiO2/PU nanocomposites were measured using surface roughness tester and the surface roughness data was visualized using 3D mapping. The adhesion property between SiO2 and PU topcoat was evaluated using adhesion pull-off test. The static contact angle was measured using distilled water to evaluate the hydrophobicity. Finally, the pre-curing time of PU topcoat was optimized to exhibit the hydrophobicity of SiO2/PU topcoat.

Effects of Silver Treatment and the Physical and Chemical Properties of Spherical Activated Carbon

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Hyuk;Chen, Ming-Liang;Zhang, Kan;Meng, Ze-Da;Zhang, Feng-Jun
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.569-575
    • /
    • 2009
  • In this study, the effects of silver treatment and activation on the physical and chemical properties of spherical activated carbon (SAC) were studied. The textural properties of SAC were characterized by BET surface area, XRD, SEM, iodine adsorption, strength intensity, pressure drop and antibacterial effects. BET surface areas of SACs decreased with an increase of the amount of PR before and after activation, and the BET surface areas of SACs were found to be about 2-3 times the size of those before activation. The XRD patterns showed their existing state as stable Ag crystals and carbon structure. The Ag particles are seaweedlike and uniform, being approximately 5-10 μm in size deposited on the surface of activated carbon. All of the samples had much more iodine adsorption capability after activation than before activation. The strength values of SACs increased with an increase of the amount of PR, and there was a smaller drop in the strength values of SACs with silver treatment than with non-silver treatment after activation. The Ag-SAC composites showed strong antibacterial activity against Escherichia coli (E. Coli).

Preparation of Sulfur Crosslinkable EVA and Blend With Rubbers (황가황형 EVA의 제조 및 고무와의 블렌드)

  • Jin, Je-Yong;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.229-238
    • /
    • 1999
  • In this study, double bond, unsaturated group was introduced to the main chain of EVA by chemically treating EVA, nondiene polymer. Benzene sulfonic acid, ENB and DCPD were used as a third element. Also, from blending CR and SBR, conventional synthetic rubber we prepared vulcanizates and examined their physical properties. The datum lead to the following conclusion that some problems were modified; limited temperature in use and mechanical properties like hardness, tensile strength, tensile stress, and elongation rate of thermoplastic EVA, keeping the following advantages of original EVA; green strength, injection molding by Pressure, adhesion, tackiness, dimensional stability, and ozone resistance, etc. It is expected that continuous research of the modification between nondiene and diene polymer will improve what were shown disadvantages in synthetic polymer; processing, oxidation resistance, and adhesion. In addition, it will be possible to continue process of rubber products by utilizing possible fluidity for fusion of EVA.

  • PDF

A Study on the Mechanical Properties and Specific Resistivity of Reaction-Bonded Silicon Carbide According to α-SiC of Various Mixed Particle Size (반응소결 탄화규소의 다양한 α-SiC 조성에 따른 기계적 특성과 전기저항 특성에 관한 연구)

  • Kim, Young-Ju;Park, Young-Shik;Jung, Youn-Woong;Song, Jun-Baek;Park, So-Young;Im, Hang-Joon
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.172-177
    • /
    • 2012
  • For the manufacture of low resistance Si-SiC composite, the properties of reaction sintering in the green body of various mixed ${\alpha}$-SiC powder size with the various carbon contents from 0wt% to 20wt% were investigated. The samples preparation was green body by CIP method under this condition, molten silicon infiltration process was conducted to reaction bonded silicon carbide. the results of sintered density, 3-point bending strength and resistance of analysis showed that varied carbon and silicon melt reacted to convert to fine ${\beta}$-SiC particle and the structure was changed to dense material. The amount of fine ${\beta}$-SiC particle was gradually increased as carbon content increase. According to mixed composite, it's mechanical and specific resistivity properties was strongly influenced by carbon content within 10wt% more then carbon content 10wt% was strongly influenced by phase transition.

TiO2 Combining Spherical Activated Carbon Photocatalysts and Their Physicochemical and Photocatalytic Activity

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Hyuk;Chen, Ming-Liang;Zhang, Feng-Jun;Zhang, Kan;Choi, Jong-Geun;Meng, Ze-Da
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.535-542
    • /
    • 2010
  • In this study, we used coal-based activated carbons and charcoal as startingmaterials, phenolic resin (PR) as a binder, and TOS as a titanium source to prepare $TiO_2$ combining spherical shaped activated carbon photocatalysts. The textural properties of the activated carbon photocatalysts (SACP) were characterized by specific surface area (BET), energy dispersive X-ray spectroscopy (XRD), scanning electron microscopy (SEM), iodine adsorption, strength intensity, and pressure drop. The photocatalytic activities of the SACPs were characterized by degradation of the organic dyes Methylene Blue (MB), Methylene Orange (MO), and Rhodamine B (Rh. B) and a chemical oxygen demand (COD) experiment. The surface properties are shown by SEM. The XRD patterns of the composites showed that the SACP composite contained a typical single, clear anatase phase. The EDX spectro for the elemental indentification showed the presence of C and O with Ti peaks. According to the results, the spherical activated carbon photocatalysts sample of AOP prepared with activated carbon formed the best spherical shape, a high BET surface area, iodine adsorption capability and strength value, and the lowest pressure drop, and the photocatalytic activity was better than samples prepared with charcoal. We compared the degradation effects among three kinds of dyes. MB solution degraded with the SACP is better than any other dye solutions.

Dynamic Optimization of o Tire Curing Process for Product Quality (제품품질을 위한 타이어 가황공정의 동적 최적화)

  • Han, In-Su;Kang, Sung-Ju;Chung, Chang-Bock
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.321-331
    • /
    • 1999
  • The curing process is the final step in tire manufacturing whereby a green tire built from layers of rubber compounds is formed to the desired shape and the compounds are converted to a strong, elastic materials to meet tire performance needs under elevated pressure and temperature in a press. A numerical optimization procedure was developed to improve product quality in a tire curing process. First, a dynamic constrained optimization problem was formulated to determine the optimal condition of the supplied cure media during a curing process. The objective function is subject to an equality constraint representing the process model that describes the heat transfer and cures kinetic phenomena in a cure press and is subject to inequality constraints representing temperature limits imposed on cure media. Then, the optimization problem was solved to determine optimal condition of the supplied cure media for a tire using the complex algorithm along with a finite element model solver.

  • PDF

Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber (고성능 에너지 절약형 타이어 트레드 고무의 합성 제조 기술)

  • Lee, Bum-Jae;Lim, Ki-Won;Ji, Sang-Chul;Jung, Kwon-Young;Kim, Tae-Jung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.232-243
    • /
    • 2009
  • The specialized and diversified synthetic and compounding technologies are used to meet the requirements for the advanced high performance tire tread materials with better balance of fuel economy(rolling resistance), safety(wet traction) and wear resistance. These techniques involve the methodology for the improvement of chemical and physical interaction between filler and the rubber matrix using coupling agents as well as a variety of chemically-modified solution SBRs. The research trends about the high performance functional SBRs and coupling agents which can interact with the surface of fillers and their working mechanism were investigated in the conventional carbon black-filled rubber and silica-filled SBR systems developed recently as "green tire".