• Title/Summary/Keyword: Green and blue water

Search Result 232, Processing Time 0.027 seconds

Reduction of Blue-green Algae and Its By-products using Intake of Deep Water in Summer (하절기 심층취수를 이용한 남조류 및 남조류 부산물질의 유입 저감)

  • Park, Hong-Ki;Jung, Eun-Young;Son, Hee-Jong;Choi, Jin-Taek
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.393-399
    • /
    • 2017
  • In order to determine the optimal water intake point, the distribution of blue-Green algae and water quality factors in relation to the depth of the Mulgum and Maeri stations located downstream of the Nakdong River were investigated from Jun. 2015 to Sep. 2016. When the current surface water intake system was converted to the deep water intake system, Chl-a concentration and blue-Green algae were reduced by 64.1% and 80.5%, respectively. Microcystin-LR was reduced by 50% to 100%, while geosmin and 2-MIB of the odorant substances were reduced by 42.9% and 11.8%, respectively. The water quality factors such as pH, water temperature, TOC and COD were gradually decreased by 30% in deep water. Therefore, if we used the deep water intake system selectively in the summer season when blue-Green algae masses occur, the concentration of the influx of blue-green algae and its by-products can be expected to decrease, leading to reduced operation costs in tap water production and improved of raw water quality.

Radiation and Underwater Transmission Characteristics of a High-luminance Light-emitting Diode as the Light Source for Fishing Lamps (집어등 광원으로서 고휘도 발광 다이오우드의 방사 및 수중투과 특성)

  • Choi, Sok-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.6
    • /
    • pp.480-486
    • /
    • 2006
  • The radiation characteristics of a high-luminance light-emitting diode (LED) light source were studied to evaluate its potential as an energy-saving light source for fishing lamps. The angle of the LED light source with 50% illuminance was $8-15^{\circ}$, and it had strong directional characteristics. The wavelengths at which the radiance and irradiance were maxima were 709, 613, 473, 501, 525, and 465 nm for red, orange, blue, peacock blue, green, and white light, respectively. The underwater transmission characteristics of the LED light source were superior in the order blue, white, peacock blue, and green in optical water type I: blue, peacock blue, white, and green in optical water type II; and blue, peacock blue, green, and white in optical water type III. Setting the underwater transmission characteristics of the LED light source in optical water type I at 100%, the transmission of water types II and III decreased to 67 and 17%, respectively. Based on the underwater transmission characteristics calculated in optical water types I-III, the blue and peacock blue LED light sources can be used as an energy-saving light source for fishing lamps.

Underwater Imaging with a blue-green laser (청록색 레이저를 이용한 수중영상 연구)

  • Lee, S.H.;Kim, G.B.;Lee, K.S.;Kim, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2180-2182
    • /
    • 2000
  • Laser emission, a part of electromagnetic wave, has short propagation length in water, and the underwater applications of laser are limited. The acquisition of underwater imaging is possible only by using a blue-green laser since the blue-green range has relatively small absorption coefficient in water. We introduce the conditions of the laser required for underwater imaging and the attenuation characteristics of a blue-green laser used in water.

  • PDF

Estimation of Water Footprint for Upland Crop Production in Korea (한국의 밭작물 생산에서의 물발자국 산정)

  • Yoo, Seung-Hwan;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.65-74
    • /
    • 2014
  • Water footprint is defined as the total volume of direct and indirect water used to produce a good and service by consumer or producer, and measured at the point of production based on virtual water concept. The green and blue water footprint refers to the volume of the rainwater and the irrigation water consumed, respectively. Crop water footprint is expected to be used as the basic data for agricultural water resources policies at production, consumption and trade aspect. Thus, it is necessary to estimate suitable green and blue water footprint for South Korea. The objective of this paper is to quantify the green and blue water footprint and usage of upland crops during the period 2001-2010. To estimate the water footprint, 43 upland crop production quantity and harvested area data were collected for 10 years and FAO Penman-Monteith equation was adopted for calculating crop water requirement. As the results, the water footprint of cereals, vegetables, fruits and oil crops accounted for 1,994, 165, 605, and 4,226 $m^3/ton$, respectively. The usage of water footprint for crop production has been estimated at 3,499 (green water) and 216 (blue water) $Mm^3/yr$ on average showing a tendency to decrease. Fruits and vegetables have the largest share in the green water usage, consuming about 1,200 and 1,060 $Mm^3/yr$ which are about 65 % of gross usage. The results of this study are expected to be understood by the agricultural water footprint as well as by the total water footprint from both a production and consumption perspective in Korea.

Blue-Green Laesrs and Their Application to Undrewater Communication (청록섹 레이저의 수중통신 응용)

  • 김용평;최종운
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.12
    • /
    • pp.1211-1218
    • /
    • 1991
  • The under water communication which use blue green lasers reviewed. In the view point of absorption and scattering, the optical characteristics of sea water are described. In addition, state of blue green lasers for under water communication are summarized.

  • PDF

A study on the development of a Blue-green algae cell count estimation formula in Nakdong River downstream using hyperspectral sensors (초분광센서를 활용한 낙동강 하류부 남조류세포수 추정식 개발에 관한 연구)

  • Kim, Gwang Soo;Choi, Jae Yun;Nam, Su Han;Kim, Young Dod;Kwon, Jae Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.373-380
    • /
    • 2023
  • Due to abnormal climate phenomena and climate change in Korea, overgrowth of algae in rivers and reservoirs occurs frequently. Algae in rivers are classified into green algae, blue-green algae, diatom, and other types, and some species of blue-green algae cause problems due to odor and the discharge of toxic substances. In Korea, an algae alert system is in place, and it is issued based on the number of harmful blue-green algae cells. Thus, measuring harmful blue-green algal blooms is very important, and currently, the analysis method of algae involves taking field samples and determining the cell count of green algae, blue-green algae, and diatoms through algal microscopy, which takes a lot of time. Recently, the analysis of algae concentration through Phycocyanin, an alternative indicator for the number of harmful algae cells, has been conducted through remote sensing. However, research on the analysis of the number of blue-green algae cells is currently insufficient. In this study, we water samples for algal analyses were collected from river and counted the number of blue-green algae cells using algae microscopy. We also obtained the Phycocyanin concentration using an optical sensor and acquired algae spectra through a hyperspectral sensor. Based on this, we calculated the equation for estimating blue-green algae cell counts and estimated the number of blue-green algae cells.

Analysis of Exclusive Causality between Environmental Factors and Cell Number of Cyanobacteria in Guem River (금강 주요지점에서의 환경 인자와 남조류 세포수의 배타적 인과성분석)

  • Kim, Yeonhwa;Lee, EunHyung;Kim, Kyunghyun;Kim, Sanghyun
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.937-950
    • /
    • 2016
  • Algal blooming in 4 major rivers introduces substantial impacts to water front activity. Concentrations of algae are increasing at major points along the Geum River. Ecosystem food webs can be affected by algal blooming because blue-green algae release toxic materials. Even though there have been many studies on blue-green algae, its causality to environmental factors has not been completely determined yet. This study analyzed the exclusive correlation between various hydrometeorological, water quality, and hydrologic variables and the cell number of cyanobacteria to understand causality of blue-green algae in the Geum River. A prewhitening process was introduced to remove the autocorrelation structure and periodicity, which is useful to evaluate the effective relationship between two time series.

Characteristics of Formation of Chlorination Disinfection By-Products in Extracellular Organic Matter of Various Algal Species (다양한 조류종들의 세포외 유기물질에서의 염소 소독부산물 생성 특성)

  • Son, Hee-Jong;Park, Hong-Ki;Hwang, Young-Do;Jung, Jong-Moon;Kim, Sang-Goo
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.541-547
    • /
    • 2015
  • Formation of disinfection by-products (DBPs) including trihalomethans (THMs) and haloacetic acids (HAAs) from chlorination of six different species (Chlorella vulgaris, Scenedesmus sp., Anabaena cylindrical, Microcystis aeruginosa, Asterionella formosa and Aulacoseira sp.) of algal extracellular organic matter (EOM). The EOM characteristics evaluation of six algal species reaching at the stationary phase in the growth curve showed most of its SUVA254 showed below 1 and this means hydrophilic organic matter is much higher than hydrophobic organic matter. Chloroform formation potential (CFFP), dichloroacetic acid formation potential (DCAAFP) and trichloroacetic acid formation potential (TCAAFP) were mainly composed of THMFP and HAAFP in the EOM of various algal species. In the case of THMFP/DOC and HAAFP/DOC values, EOM of blue-green algae has appeared highest and EOM of green algae and diatom in order. THMFP/DOC was higher than HAAFP/DOC in EOM of blue-green algae. In comparison of formation potential by unit DOC composed of HAAFP in algal species EOM, DCAAFP/DOC was 1.5 times to 7.5 time higher than TCAAFP/DOC in the EOM of blue-green algae, while DCAAFP/DOC was found to be relatively high compared to TCAAFP/DOC in the EOM of green algae and diatom.

Correlation between Phytoplankton Dynamics and Water Quality in Paldang Reservoir (팔당호에서 식물플랑크톤 군집 동태와 수질과의 상관성)

  • Han, Myung-Soo;Jheong, Weon-Hwa;Park, Jun-Dae;Kim, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.217-224
    • /
    • 2005
  • This study was aimed to analyze the long-term fluctuation of water quality and phytoplankton dynamics of Paldang reservoir in Korea and to assess the relationship between algal bloom patterns and hydrological, limnological data. Diatoms in Paldang reservoir occurred continuously through the year. Blue- green algae occurred during the summer season (from June to Sept.), and the highest count was observed in July. Occurrence pattern of green algae was similar to that of blue-green algae. The rest of algae contained a lot of Cryptomonas spp. whose concentration was high from May to Aug. Dominant algal genera (>>7,000 cells $mL^{-1}$) in Paldang reservoir were Aulacoseira, Cyclotella, Microcystis, and Cryptomonas spp. Microcystis and Anabaena occurred during the summer season. Many different green algal genera were found in Paldang reservoir but their abundances were very low. There were some significant correlations (r>0.3, p<0.05) between algal taxa and water quality; diatoms and water temperature, TP:blue-green algae and water temperature, pH, DO saturation, COD, TP; green algae and water temperature, pH, DO saturation, COD, SS, TP. Furthermore, algal genera and water quality was significantly correlated (r>0.3, p<0.05) ; Aulacoseira and TN, TP; Anabaena and water temperature, DO saturation, COD, TP : Microcystisand water temperature, pH, DO saturation, TP; Coelastrum and COD, SS; Scenedesmus and water temperature, COD, TN, TP; Cryptomonas and DO saturation, TN. In Paldang reservoir, the water temperature had relatively big effect on blue-green algal bloom that was also dependant upon its hydrologic condition.

Water Scarcity Assessment Using Green and Blue Water Concepts (그린워터 및 블루워터를 이용한 물부족 평가)

  • Kim, Sung Eun;Lee, Dong Kun;Yang, Byung Sun;Jin, Yihua
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.267-278
    • /
    • 2018
  • With climate change and population growth, there are significant increases in water scarcity. There have been water security assessments to abate the gap between water demand and availability to support water resource management. However, most of the assessments are focusing on the water that flows through either on or below the land surface, failing to consider water that infiltrates and can be used by vegetation. This study presents water scarcity assessment accounting for Blue and Green water concept, and applied the method to Boryung region. Monthly streamflow, evapotranspiration, and soil moisture were estimated by SWAT modeling, and each of them was used to analyze Blue and Green water scarcity. Blue and Green water scarcity had different aspect, and the result indicated the time when water scarcity is more likely to happen. The water scarcity assessment framework presented in this paper provides novel assessment method integrating hydrologic and ecosystem aspects, thereby improving the understanding of how water resources should be managed.