• 제목/요약/키워드: Green Timber Wall panel

검색결과 2건 처리시간 0.014초

그린팀버월 패널의 전단성능 (Shear performance of green timber wall panels)

  • 김윤희;신일중;장상식
    • 농업과학연구
    • /
    • 제38권3호
    • /
    • pp.541-547
    • /
    • 2011
  • Korean building industry was developed by concrete and steel construction. However, concrete and steel have some problems which low carbon storage capability and difficulty of recycling. According to many studies, timber has high carbon storage capability, high recycling capability and sustainable supporting capability. Focus on this factors of timber, make new wall structure as Green Timber Wall panels and check the shear performance to use wall system in housing construction such as light-weight timber construction and nondearing wall on other construction. In the results, B-4-B and B-4-S show similar modulus of shear stiffness on the table. GH-4-GH has slip shape failure mode between Green Timber Wall boards. GH-4-GV has most stable characteristic curve than other specimens.

그린팀버월 패널의 열전달 특성 (Heat transfer of green timber wall panels)

  • 김윤희;장상식;신일중
    • 농업과학연구
    • /
    • 제38권1호
    • /
    • pp.115-120
    • /
    • 2011
  • 20% of total energy use to sustain temperature of building inside. In this reasons, researchers effort to improve the thermal insulation capacity with new wall system. Using appropriate materials and consisting new wall system should considered in energy saving design. OSB(Oriented strand board), Larch lining board used to consist wall system. $2{\sim}6$ Larch lining board has tongue & groove shape for preventing moisture. Comparing with gypsum board and green timber lining board as interior sheathing material, temperature difference of Green timber wall system was bigger than temperature difference of gypsum board wall system. This aspects indicate that Green timber wall system was revealed higher thermal insulation property than gypsum board wall system. Gypsum board portion transfer heat easily because temperature difference gradient of gypsum board wall system was smaller than OSB wall system. Total temperature variation shape of G-4-S and G-6-S show similar model but, temperature variation shape in green timber wall portion assume a new aspect. The purpose of this study was that possibility of thermal insulation variation and new composition of wall system identify to improve thermal insulation performance. In the temperature case, this study shows possibility of improving thermal insulation performance. Humidity, sunshine and wind etc. should considered to determine building adiabatic properties.