• 제목/요약/키워드: Green Hydrogen

Search Result 399, Processing Time 0.022 seconds

Characteristics of Trichloroethene and Tetrachloroethene Sensing Optical Fiber Biosensor Using Toluene-o-monooxygenase and Fluoresceinamine (Toluene-o-monooxygenase와 Fluoresceinamine을 이용한 Trichloroethene와 Tetrachloroethene 감지용 광섬유 바이오센서의 특성)

  • Ryoo, Doohyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.4
    • /
    • pp.42-47
    • /
    • 2018
  • E. coli TG1 pBS TOM Green was cultured to produce toluene-o-monooxygenase (TOM). A biosensor system was successfully constructed using purified TOM to effectively detect trichloroethene (TCE) and tetrachloroethene (PCE), which represent some of the major contaminants in groundwater and soil. In order to utilize TOM as a sensor, NADH, a biological oxidizer, was replaced with hydrogen peroxide which is a chemical oxidizing agent. A three-layered sandwich-type sensing tip was fabricated on the outside of the hydrophilic polyvinylidene fluoride membrane. TCE and PCE were applied to the sensor and the hydrogen ions were measured by a fiber optic fluorometer using fluoresceinamine. Calibration curves were obtained for TCE and PCE in the concentration range of 0.2-100 mg/l, and the detection limit of the system was $10{\mu}g/l$ for TCE and PCE.

Toluene Monooxygenase의 Peroxide shuntting에 의한 TCE와 PCE 분해 특성

  • 류두현;김형수;최용욱;김용미;이경애;유재수;조현
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.277-280
    • /
    • 2004
  • TCE and PCE, suspected carcinogens, are the most common groundwater pollutant from extensive use as a solvent and degreaser. Escherichia coli TGI pBSKAN TOM Green and E. coli TGI pBSKAN ToMO, which were used DNA shuffling technique, produce Toluene-o-monooxygenase(TOM) and toluene-o-xylene- monooxygenase(ToMO). These cells and enzymes are degrading TCE and PCE, TOM and ToMO are needed to cofactor, such as NADH, NADPH and other cofactors. Used TCE and PCE degrading microorganisms experiment the contaminated material removal efficiency. A shunting test used NAD and Hydrogen peroxide.

  • PDF

Liquid phase hydrogen peroxide decomposition for micro-propulsion applications

  • McDevitt, M. Ryan;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.21-35
    • /
    • 2017
  • Hydrogen peroxide is being considered as a monopropellant in micropropulsion systems for the next generation of miniaturized satellites ('nanosats') due to its high energy density, modest specific impulse and green characteristics. Efforts at the University of Vermont have focused on the development of a MEMS-based microthruster that uses a novel slug flow monopropellant injection scheme to generate thrust and impulse-bits commensurate with the intended micropropulsion application. The present study is a computational effort to investigate the initial decomposition of the monopropellant as it enters the catalytic chamber, and to compare the impact of the monopropellant injection scheme on decomposition performance. Two-dimensional numerical studies of the monopropellant in microchannel geometries have been developed and used to characterize the performance of the monopropellant before vaporization occurs. The results of these studies show that monopropellant in the lamellar flow regime, which lacks a non-diffusive mixing mechanism, does not decompose at a rate that is suitable for the microthruster dimensions. In contrast, monopropellant in the slug flow regime decomposes 57% faster than lamellar flow for a given length, indicating that the monopropellant injection scheme has potential benefits for the performance of the microthruster.

Fabrication of Porous Cu by Freeze-Drying Method of CuO-Camphene Slurry (CuO-Camphene 슬러리의 동결건조에 의한 Cu 다공체 제조)

  • Kim, Min-Soo;Oh, Sung-Tag;Chang, Si-Young;Suk, Myung-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.327-331
    • /
    • 2011
  • In order to fabricate the porous metal with controlled pore characteristics, unique processing by using metal oxide powder as the source and camphene as the sublimable material is introduced. CuO powder was selected as the source for the formation of Cu metal via hydrogen reduction. Camphene-based CuO slurry, prepared by milling at $47^{\circ}C$ with a small amount of dispersant, was frozen at $-25^{\circ}C$. Pores were generated subsequently by sublimation of the camphene. The green body was hydrogen-reduced at $200^{\circ}C$ for 30 min, and sintered at $500-700^{\circ}C$ for 1 h. Microstructural analysis revealed that the sintered Cu showed aligned large pore channels parallel to the camphene growth direction, and fine pores are formed around the large pore. Also, it showed that the pore size was controllable by the slurry concentration.

Effect of Powder Characteristic and Freeze Condition on the Pore Characteristics of Porous W (텅스텐 다공체의 기공특성에 미치는 분말특성 및 동결조건의 영향)

  • Kwon, Na-Yeon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.259-263
    • /
    • 2012
  • Dependence of the freeze-drying process condition on microstructure of porous W and pore formation mechanism were studied. Camphene slurries with $WO_3$ contents of 10 vol% were prepared by milling at $50^{\circ}C$ with a small amount of dispersant. Freezing of a slurry was done in Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was hydrogen-reduced at $800^{\circ}C$ for 30 min, and sintered in the furnace at $900^{\circ}C$ for 1 h. After heat treatment in hydrogen atmosphere, $WO_3$ powders were completely converted to metallic W without any reaction phases. The sintered samples showed large pores with the size of about $70{\mu}m$ which were aligned parallel to the camphene growth direction. Also, the internal wall of large pores and near bottom part of specimen had relatively small pores with dendritic structure due to the growth of camphene dendrite depending on the degree of nucleation and powder rearrangement in the slurry.

Application of nanoparticles in extending the life of oil and gas transmission pipeline

  • Yunye, Liu;Hai, Zhu;Jianfeng, Niu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.733-741
    • /
    • 2022
  • The amount of natural gas that is used on a worldwide scale is continuously going up. Natural gas and acidic components, such as hydrogen sulfide and carbon dioxide, cause significant corrosion damage to transmission lines and equipment in various quantities. One of the fundamental processes in natural gas processing is the separation of acid gases, among which the safety and environmental needs due to the high toxicity of hydrogen sulfide and also to prevent wear and corrosion of pipelines and gas transmission and distribution equipment, the necessity of sulfide separation Hydrogen is more essential than carbon dioxide and other compounds. Given this problem's significance, this endeavor aims to extend the lifespan of the transmission lines' pipes for gas and oil. Zinc oxide nanoparticles made from the environmentally friendly source of Allium scabriscapum have been employed to accomplish this crucial purpose. This is a simple, safe and cheap synthesis method compared to other methods, especially chemical methods. The formation of zinc oxide nanoparticles was shown by forming an absorption peak at a wavelength of about 355 nm using a spectrophotometric device and an X-ray diffraction pattern. The size and morphology of synthesized nanoparticles were determined by scanning and transmission electron microscope, and the range of size changes of nanoparticles was determined by dynamic light scattering device.

Storability and Material Compatibility Test of Blended Hydrogen Peroxide Propellant (블렌딩 기법을 적용한 과산화수소 추진제의 저장성 및 재료 적합성 평가)

  • Lee, Jeong-Sub;Jang, Dong-Wuk;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.20-28
    • /
    • 2012
  • Blending method was applied to increase the performance of hydrogen peroxide which is called green propellant. 90 wt.% hydrogen peroxide was blended with ethanol which is less toxic fuel, and there was no storability decrease due to fuel addition. Inconel X750 and Tophet A showed good compatibility and high heat resistance, and SUS 316L was compatible. $Al_2O_3$, $Y_2O_3$, and $ZrO_2$, were coated on the material to improve heat resistance, and it was proved from endurance test that $Y_2O_3$ coating is not suitable and adhesive strength between coating and material is related with allowable temperature of material. Thruster test was performed to confirm the performance increase by blending method, and chamber temperature was $870^{\circ}C$ which is higher than $760^{\circ}C$ that is adiabatic chamber temperature of 90 wt.% hydrogen peroxide.

Storability and Material Compatibility Test of Blended Hydrogen Peroxide Propellant (블렌딩 기법을 적용한 과산화수소 추진제의 저장성 및 재료 적합성 평가)

  • Lee, Jeong-Sub;Jang, Dong-Wuk;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.150-158
    • /
    • 2011
  • Blending method was applied to increase the performance of hydrogen peroxide which is called green propellant. 90 wt.% hydrogen peroxide was blended with ethanol which is less toxic fuel, and there was no storability decrease due to fuel addition. Inconel X750 and Tophet A showed good compatibility and high heat resistance, and SUS 316L was compatible. Al2O3, Y2O3, and ZrO2, were coated on the material to improve heat resistance, and it was proved from endurance test that Y2O3 coating is not suitable and adhesive strength between coating and material is related with allowable temperature of material. Thruster test was performed to confirm the performance increase by blending method, and chamber temperature was $870^{\circ}C$ which is higher than $760^{\circ}C$ that is adiabatic chamber temperature of 90 wt.% hydrogen peroxide.

  • PDF

Hydrogen Production Systems through Water Electrolysis (물 전기분해에 의한 수소제조 기술)

  • Hwang, Gab-Jin;Choi, Ho-Sang
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.477-486
    • /
    • 2017
  • Hydrogen is one of energy storage systems, which could be transfer from electric energy to chemical energy or from chemical energy to electric energy, and is as an energy carrier. Water electrolysis is being investigating as one of the hydrogen production methods. Recently, water electrolysis receive attention for the element technology in PTG (power to gas) and PTL (power to liquid) system. In this paper, it was explained the principle and type for the water electrolysis, and recent research review for the alkaline water electrolysis.

Techno-economic Analysis of Power to Gas (P2G) Process for the Development of Optimum Business Model: Part 1 Methane Production

  • Roy, Partho Sarothi;Yoo, Young Don;Kim, Suhyun;Park, Chan Seung
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.182-192
    • /
    • 2022
  • This study provides an overview of the production costs of methane and hydrogen via water electrolysis-based hydrogen production followed by a methanation based methane production technology utilizing CO2 from external sources. The study shows a comparative way for economic optimization of green methane generation using excess free electricity from renewable sources. The study initially developed the overall process on the Aspen Plus simulation tool. Aspen Plus estimated the capital expenditure for most of the equipment except for the methanation reactor and electrolyzer. The capital expenditure, the operating expenditure and the feed cost were used in a discounted cash flow based economic model for the methane production cost estimation. The study compared different reactor configurations as well. The same model was also used for a hydrogen production cost estimation. The optimized economic model estimated a methane production cost of $11.22/mcf when the plant is operating for 4000 hr/year and electricity is available for zero cost. Furthermore, a hydrogen production cost of $2.45/GJ was obtained. A sensitivity analysis was performed for the methane production cost as the electrolyzer cost varies across different electrolyzer types. A sensitivity study was also performed for the changing electricity cost, the number of operation hours per year and the plant capacity. The estimated levelized cost of methane (LCOM) in this study was less than or comparable with the existing studies available in the literature.