• Title/Summary/Keyword: Green Hydrogen

검색결과 399건 처리시간 0.021초

친환경 선박 개발에 따른 해외 그린수소 수입에 대한 탄소 배출 영향 및 수소 단가 분석 (Analysis of Carbon Emission Effects and Hydrogen Prices for Overseas Green Hydrogen Imports by Development of Green Ship)

  • 김도형;최예빈;오지현;박철호
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.1-13
    • /
    • 2024
  • Hydrogen is emerging as an essential material for carbon neutrality. In particular, Korea needs 22.9 million tons of imported clean hydrogen by 2050 to achieve carbon neutrality. However, a large amount of carbon is emitted during the import process, and market regulations are being discussed. This research estimates the carbon emissions of importing green hydrogen from Vietnam, Australia, and the United Arab Emirates to Korea, and calculates imported green hydrogen prices under carbon emission market regulations.

신재생 에너지를 이용한 해외 그린 암모니아 프로젝트에 대한 경제성 비교 (Economic Feasibility Comparison of Overseas Green Ammonia Project Using Renewable Energy)

  • 신현창;목학수
    • 한국산업융합학회 논문집
    • /
    • 제27권3호
    • /
    • pp.547-553
    • /
    • 2024
  • Hydrogen is considered a key energy source to achieve carbon neutrality through the global goal of 'Net Zero'. Due to limitations in domestic green hydrogen production, Korean companies are interested in importing green hydrogen produced overseas. Because Australia and the Middle East possess high-quality renewable energy resources, they are attracting attention as suitable regions for producing green hydrogen using renewable energy. The cost of constructing and operating a green ammonia plant varies depending on the region. In this study, an economic feasibility comparison of green ammonia plant construction in Australia and the Middle East is conducted. Through this, it is expected to contribute to the economic analysis and feasibility analysis of the project to import hydrogen in the form of green ammonia into Korea.

Preliminary Economic Analysis based on Optimization of Green Ammonia Plant Configuration in the Middle East for Import into Korea

  • Hyun-Chang Shin;Hak-Soo Mok;Woo-Hyun Son
    • 한국산업융합학회 논문집
    • /
    • 제27권2_1호
    • /
    • pp.277-285
    • /
    • 2024
  • Hydrogen is considered a key energy source to achieve carbon neutrality through the global goal of 'net zero'. Due to limitations in producing green hydrogen domestically, Korean companies are interested in importing green hydrogen produced overseas. The Middle East has high-quality solar energy resources and is attracting attention as a region producing green hydrogen using renewable energy. To build a green ammonia plant, optimization of the production facility configuration and economic feasibility analysis are required. It is expected that it will contribute to reviewing the economic feasibility of constructing overseas hydrogen production plants through preliminary economic feasibility analysis.

그린수소 기반 섹터 커플링 통한 재생에너지 출력제한 경감효과 연구 (Study on Reduction of Curtailment of Renewable Generation based on Green Hydrogen Sector Coupling)

  • 전우영;김진이;이성우
    • 신재생에너지
    • /
    • 제18권2호
    • /
    • pp.50-59
    • /
    • 2022
  • The Korean government announced the "1st Basic Plan for the Transition to Hydrogen Economy" in 2021 and declared the establishment of a hydrogen industry ecosystem by 2040. To build a low-carbon power system, resources that can efficiently accommodate renewable energy are required, and green hydrogen is considered a potential solution. This study analyzed the economic feasibility of green hydrogen-based sector coupling to reduce curtailment of renewable generation in the Jeju power system by 2025 under the scenario of with or without HVDC#3. The result showed that HVDC#3 significantly reduced the frequency of curtailment from 16.1% to 3.0%. In addition, green hydrogen-based sector coupling was an economically feasible option as result showed an IRR of 4.86% when HVDC#3 was connected and 11.45% when it was not under the condition of achieving 50% curtailment reduction. This study shows that the higher the level of renewable energy deployment, the more delayed the HVDC connection between Jeju and the main land, and the lower the SMP, the more economically feasible the green hydrogen-based sector coupling is. Furthermore, this study suggests that the policy goal of completely reducing curtailment is not economically efficient.

Operational Characteristics of High-Performance kW class Alkaline Electrolyzer Stack for Green Hydrogen Production

  • Choi, Baeck B.;Jo, Jae Hyeon;Lee, Taehee;Jeon, Sang-Yun;Kim, Jungsuk;Yoo, Young-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권3호
    • /
    • pp.302-307
    • /
    • 2021
  • Polymer electrolyte membrane (PEM) electrolyzer or alkaline electrolyzer is required to produce green hydrogen using renewable energy such as wind and/or solar power. PEM and alkaline electrolyzer differ in many ways, instantly basic materials, system configuration, and operation characteristics are different. Building an optimal water hydrolysis system by closely grasping the characteristics of each type of electrolyzer is of great help in building a safe hydrogen ecosystem as well as the efficiency of green hydrogen production. In this study, the basic operation characteristics of a kW class alkaline water electrolyzer we developed, and water electrolysis efficiency are described. Finally, a brief overview of the characteristics of PEM and alkaline electrolyzer for large-capacity green hydrogen production system will be outlined.

Optimization of Green Ammonia Production Facility Configuration in Australia for Import into Korea

  • Hyun-Chang Shin;Hak-Soo Mok
    • 한국산업융합학회 논문집
    • /
    • 제27권2_1호
    • /
    • pp.269-276
    • /
    • 2024
  • Many countries across the world are making efforts beyond reducing CO2 levels and declaring 'net zero,' which aims to cut greenhouse gas emissions to zero by not emitting any carbon or capturing carbon, by 2050. Hydrogen is considered a key energy source to achieve carbon neutrality goals. Korean companies are also interested in building overseas green ammonia production plants and importing hydrogen into Korea in the form of ammonia. Green hydrogen production uses renewable energy sources such as solar and wind power, but the variability of power production poses challenges in plant design. Therefore, optimization of the configuration of a green ammonia production plant using renewable energy is expected to contribute as basic information for securing the economic feasibility of green ammonia production.

사우디아라비아의 수소 산업 투자 확대의 배경 조사와 수소 정책 및 프로젝트 분석 (Investigation of Background and Analysis of Policies and Projects for the Expansion of Hydrogen Industry Investments in Saudi Arabia)

  • 김호년
    • 한국수소및신에너지학회논문집
    • /
    • 제35권3호
    • /
    • pp.269-279
    • /
    • 2024
  • Saudi Arabia is transitioning from its traditional oil-dependent economy to become a leader in the hydrogen industry. This paper explores the kingdom's strategic investments in hydrogen production and infrastructure as key components of its energy diversification and sustainability efforts. The focus is on enhancing green hydrogen production to meet domestic needs and strengthen its position in the global market. The urgency of diversifying energy sources is emphasized, with projects like the NEOM Green Hydrogen Project illustrating Saudi Arabia's commitment to renewable energy integration. These initiatives are positioned to centralize Saudi Arabia in the global shift toward sustainable energy, signaling a significant pivot in its economic and environmental policies.

발전기 냉각용 On-Site 수소 생산 시스템 적용연구 (Application Study of An On-site Hydrogen Production System for Power Generator Cooling)

  • 문전수;이재근;박필양;박경일
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.410-415
    • /
    • 2009
  • A hydrogen cooling method is used in a power generator for removing the unnecessary heat due to the windage loss of a rotor and the joule heat of a stator. A MEA (Membrane Electrolyte Assembly) hydrogen generator has been developed and applied as a hydrogen supplying system for the cooling of a 350MW power generator. As a field application result, the average potential of eleven cells and the voltage efficiency were measured 2.26V/cell and 65.4% (Higher Heating Value) respectively at the hydrogen pressure of 6 Bar, the hydrogen flow rate of 9.1L/min, and the current of 150A.

수소충전소용 프리쿨러를 위한 수소가스 냉각에 관한 연구 (Study on Cooling of Hydrogen Gas for the Pre-Cooler in the Hydrogen Refueling Station)

  • 이경한;구경모;유철휘;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제30권3호
    • /
    • pp.237-242
    • /
    • 2019
  • In the hydrogen refueling station (HRS), it is need the pre-cooling system (PCS) to limit the inside temperature ($85^{\circ}C$) of the onboard thank (700 bar) and to charge the hydrogen at short time (within 3 minutes) to fuel cell electric vehicle (FCEV). From those safety reasons, the temperature of hydrogen gas must be controled $-33^{\circ}C$ to $-40^{\circ}C$ in PCS. The cooling test of the gaseous ($N_2$, He, $H_2$) was carried out using heat exchanger (pre-cooler) by indirect cooling and direct cooling method. It was confirmed that the temperature of hydrogen gas had below $-40^{\circ}C$ at below $-75^{\circ}C$ of chiller temperature in direct cooling.

독일과 한국의 해외 청정수소 확보를 위한 양자협력 전략 비교 분석: 지정학적 관점을 중심으로 (A Comparative Analysis of the Germany and Korea's Bilateral Cooperation Strategy to Secure Overseas Clean Hydrogen: Focusing on the Geopolitical Perspective)

  • 전은진;우아미;박미라;정현덕;신현우
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.470-498
    • /
    • 2022
  • Recently, the world has been considering hydrogen energy as the primary energy transition means to achieve carbon neutrality by 2050. In order to achieve the goal of reducing greenhouse gas emissions, Korea is also promoting a clean hydrogen economy. However, it is necessary to introduce various clean hydrogen from overseas so that the projected demand can not meet the domestically produced. For this study, we conducted the policy comparison approach between countries other than the generally considered technical and economic approaches. The finding proposes the direction of bilateral cooperation for a strategy of securing overseas clean hydrogen from a geopolitical perspective. Germany was a target country for the policy comparison since it has a high proportion of manufacturing, like Korea, and is taking the lead in the renewable-based energy transition policy. According to the survey and analysis of the policy establishment status and new projects of the two countries, Germany is promoting bilateral international cooperation in the hydrogen area with about 33 countries based on 7 types of activities. In comparison, Korea is involved in bilateral cooperation with about 12 countries on relatively few activities. Among the types of bilateral cooperation, R&D cooperation with advanced countries for hydrogen technology was a common activity type. Germany preemptively promotes cooperation for demonstration and commercialization, considering geopolitical means and strengthening manpower training and assistance on policy and regulation to preoccupy the market for the future. Therefore, it is necessary to consider establishing a network of an entire life cycle of supply and demand network that links the future market with securing clean hydrogen considering the geopolitical distribution. To this end, Korea also needs to expand bilateral cooperation countries by activity type, and it seems necessary to seek various geopolitical-based bilateral cooperation and support measures for developing countries to diversify the supply sources of hydrogen.