• Title/Summary/Keyword: Green Energy Technology

Search Result 1,178, Processing Time 0.032 seconds

Comparison on Accuracy of Static and Dynamic Contact Angle Methods for Evaluating Interfacial Properties of Composites (복합재료의 계면특성 평가를 위한 접촉각 방법의 정확도 비교)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.87-93
    • /
    • 2022
  • To analyze the interfacial property between the fiber and the matrix, work of adhesion was used generally that was calculated by surface energies. In this paper, it was determined what types of contact angle measurement methods were more accurate between static and dynamic contact angle measurements. 4 types of glass fiber and epoxy resin were used each other to measure the contact angle. The contact angle was measured using two types, static and dynamic contact angle methods, and work of adhesion, Wa was calculated to compare interfacial properties. The interfacial property was evaluated using microdroplet pull-out test. Generally, the interfacial property was proportional to work of adhesion. In the case of static contact angle, however, work of adhesion was not consistent with interfacial property. It is because that dynamic contact angle measurement comparing to static contact angle could delete the error due to microdroplet size to minimize the surface area as well as the meniscus measuring error.

Development and Self-Healing Performance of Epoxy Based on Disulfide (이황화 결합을 기반으로 한 자가치유 에폭시 개발 및 자가치유 성능 평가)

  • Donghyeon Lee;Seong Baek Yang;Jong-Hyun Kim;Mantae Kim;Dong-Jun Kwon
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.337-342
    • /
    • 2024
  • Thermosetting composite materials are applied in mobility and structural applications due to their high mechanical strength and thermal properties. Nevertheless, these materials are difficult to recycle or reprocess. Therefore, research is currently underway to introduce vitrimer as a solution to this challenge. In this study, to enable reprocessing and self-healing of structural epoxy, an epoxy containing disulfide bonds was synthesized and added. The addition of disulfide epoxy resulted in a decrease in tensile strength and Young's modulus, but an increase in tensile strain. Analysis of the fracture surface after tensile testing revealed that the addition of disulfide epoxy imparted characteristics of ductile materials. This is attributed to the structure of disulfide epoxy, which primarily involves alkyl chains and bond exchange occurring at the disulfide bonds. It was confirmed that the addition of disulfide epoxy enables self-healing through reprocessing. While reprocessing was not possible with disulfide epoxy content below 17 wt%, it was feasible up to four times with content above 0.25 wt%. This study is expected to contribute to extending the lifespan of structural composites and enhancing recycling possibilities through reprocessing.

SUSTAINABILITY SOLUTIONS USING TRENCHLESS TECHNOLOGIES IN URBAN UNDERGROUND INFRASTRUCTURE DEVELOPMENT

  • Dae-Hyun (Dan) Koo;Samuel Ariaratnam
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.367-374
    • /
    • 2013
  • Underground infrastructure systems provide essential public services and goods through buried structures including water and sewer, gas and petroleum, power and communication pipelines. The majority of existing underground infrastructure systems was installed in green field areas prior to development of complex urban built environments. Currently, there is a global trend to escalate major demand for underground infrastructure system renewal and new installation while minimizing disruption and maintaining functions of existing superstructures. Therefore, Engineers and utility owners are rigorously seeking technologies that minimize environmental, social, and economic impact during the renewal and installation process. Trenchless technologies have proven to be socially less disruptive, more environmentally friendly, energy conservative and economically viable alternative methods. All of those benefits are adequate to enhance overall sustainability. This paper describes effective sustainable solutions using trenchless technologies. Sustainability is assessed by a comparison between conventional open cut and trenchless technology methods. Sustainability analysis is based on a broad perspective combining the three main aspects of sustainability: economic; environmental; and social. Economic includes construction cost, benefit, and social cost analysis. Environmental includes emission estimation and environmental quality impact study. Social includes various social impacts on an urban area. This paper summarizes sustainable trenchless technology solutions and presents a sustainable construction method selection process in a proposed framework to be used in urban underground infrastructure capital improvement projects.

  • PDF

A Study on the Validity of Rural Type Low Carbon Green Village Through Case Analysis (사례분석을 통한 농촌형 저탄소 녹색마을 타당성 검토)

  • Do, In-Hwan;Hwang, Eun-Jin;Hong, Soo-Youl;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.913-921
    • /
    • 2011
  • This study examined the overall feasibility of low carbon green village formed in rural area. The check method is analyzing its environmental and economic feasibility and energy self-reliance. The biomass of the villages was set as 28 ton/day of livestock feces and 2 ton/day of cut fruit tree branches which make up the total of 30 ton/day. The facility consisted of a bio gasfication facility using wet (livestock feces) biomass and combined heat power generator, composting facility and wood boiler using dry (cut fruit tree branches) biomass. When operating the system, 540,540 kWh/yr of electricity and 1,762 Gcal/yr of heat energy was produced. The region's electricity energy and heat energy self-reliance rate will be 100%. The economic feasibility was found as a loss of 140 million won where the facility installation cost is 5.04 billion won, operation cost is 485.09 million won and profit is 337.12 million won. There will be a loss of about 2.2 billion won in 15 years but in the environmental analysis, it was found that crude replacement effect is about 178 million won, greenhouse gas reduction effect is about 92 million won making up the total environmental benefit of 270 million won. This means, there will be a yearly profit of about 130 million won. In terms of its environmental and economic feasibility and energy self-reliance, this project seemed to be a feasible project in overall even if it manages to get help from the government or local government.

Photoluminescence Properties of Novel $Mg_{2}SnO_{4}:Mn$ Phosphor (새로운 $Mg_{2}SnO_{4}:Mn$ 형광체의 광 발광 특성)

  • Kim, Kyung-Nam;Jung, Ha-Kyun;Park, Hee-Dong;Kim, Do-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.817-821
    • /
    • 2001
  • A new $Mg_{2-x}MN_xSnO_4$ phosphor with an inverse spinel structure was synthesized by the solid-state reaction technique. The photoluminescence properties of the $Mg_2SnO_4$:Mn phosphors were investigated under 147nm -vacuum ultraviolet ray excitation. The Mn-doped $Mg_2SnO_4$ phosphor exhibited high emission intensity with the spectrum centered at 500nm wavelength. It was explained that the green emission in $Mg_2SnO_4$:Mn phosphor has originated from energy transfer from $^4T_1$ to $^6A_1$ of $Mn^{2+}$ ion at tetrahedral site of the spinel structure. The $Mn^{2+}$ ion concentration exhibiting the maximum emission intensity under the excitation of 147nm-vacuum ultraviolet ray was 0.25mol%. And the decay time of the phosphor was shorter than 10ms.

  • PDF

Suggestion of Thermal Environment Miniature for Evaluation of Heating Efficiency Based on Thermal Conductivity Measurement Method of Building Materials (건축재료의 열전도율 측정방법에 의한 바닥재 난방효율 평가용 열환경 모형 제안)

  • Jeon, Ji-Soo;Seo, Jung-Ki;Kim, Su-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.269-280
    • /
    • 2011
  • Today, global warming is one of main problems all over the world. The cause of the global warming is carbon dioxide outbreak by the rapidly increasing energy use. Therefore, it is necessary to save energy in each industrious field. It was investigated that the half of total energy consumption over the world was used for construction and building. Therefore, the saving of the building energy plays a significant role in decreasing total energy consumption. With the considerable increase in building energy consumption, a green building rating system and certification are required to reduce building energy consumption and $CO_2$ emissions. Of various elements reducing building energy, the thermal conductivity of materials affects the energy consumption as a basic element, which is directly related with reducing energy consumption. In particular, as the thermal conductivity of finishing materials is an important factor to decide heating energy efficiency of floor heating system, the investigation and development are necessary.

A Devolatilization Model of Woody Biomass Particle in a Fluidized Bed Reactor (유동층 반응기에서의 목질계 바이오매스 입자의 탈휘발 예측 모델)

  • Kim, Kwang-Su;Leckner, Bo;Lee, Jeong-Woo;Lee, Uen-Do;Choi, Young-Tai
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.850-859
    • /
    • 2012
  • Devolatilization is an important mechanism in the gasification and pyrolysis of woody biomass, and has to be accordingly considered in designing a gasifier. In order to describe the devolatilization process of wood particle, there have been proposed a number of empirical correlations based on experimental data. However, the correlations are limited to apply for various reaction conditions due to the complex nature of wood devolatilization. In this study, a simple model was developed for predicting the devolatilization of a wood particle in a fluidized bed reactor. The model considered the drying, shrinkage and heat generation of intra-particle for a spherical biomass. The influence of various parameters such as size, initial moisture content, heat transfer coefficient, kinetic model and temperature, was investigated. The devolatilization time linearly increased with increasing initial moisture content and size of a wood particle, whereas decreases with reaction temperature. There is no significant change of results when the external heat transfer coefficient is over 300 $W/m^2K$, and smaller particles are more sensitive to the outer heat transfer coefficient. Predicted results from the model show a similar tendency with the experimental data from literatures within a deviation of 10%.

Determination of Optimized Growth Medium and Cryoprotective Additives to Enhance the Growth and Survival of Lactobacillus salivarius

  • Yeo, Soyoung;Shin, Hee Sung;Lee, Hye Won;Hong, Doseon;Park, Hyunjoon;Holzapfel, Wilhelm;Kim, Eun Bae;Huh, Chul Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.718-731
    • /
    • 2018
  • The beneficial effects of lactic acid bacteria (LAB) have been intensively investigated in recent decades with special focus on modulation of the host intestinal microbiota. Numerous discoveries of effective probiotics are driven by a significantly increasing demand for dietary supplements. Consequently, technological advances in the large-scale production and lyophilization are needed by probiotic-related industries for producing probiotic LAB for commercial use. Our study had a dual objective, to determine the optimum growth medium composition and to investigate appropriate cryoprotective additives (CPAs) for Lactobacillus salivarius, and compare its responses with other Lactobacillus species. The one-factor-at-a-time method and central composite design were applied to determine the optimal medium composition for L. salivarius cultivation. The following composition of the medium was established (per liter): 21.64 g maltose, 85 g yeast extract, 1.21 ml Tween 80, 6 g sodium acetate, $0.2g\;MgSO_4{\cdot}7H_2O$, $0.02g\;MnSO_4{\cdot}H_2O$, $1g\;K_2HPO_4$, $1.5g\;KH_2PO_4$, $0.01g\;FeSO_4{\cdot}7H_2O$, and 1 g sodium citrate. A cryoprotective additive combination comprising 10% (w/v) skim milk and 10% (w/v) sucrose supplemented with 2.5% (w/v) sodium glutamate was selected for L. salivarius, and its effectiveness was confirmed using culture-independent methods in the freeze-dried cells of the Lactobacillus strains. In conclusion, the optimized medium enhanced the species-specific cultivation of L. salivarius. On the other hand, the cryoprotective effects of the selected CPA mixture may also be dependent on the bacterial strain. This study highlights the necessity for precise and advanced processing techniques for large-scale production of probiotics in the food and feed industries.

Numerical analysis of solar heat gain on slim-type double-skin window systems - Heat transfer phenomena with opening of windows and vent slot in summer condition - (전산유체 해석을 통한 슬림형 이중외피 창호의 태양열 취득량 분석 - 높은 태양고도 및 하절기 냉방조건에서의 자연환기구 적용 및 창문 조절 방식별 비교 -)

  • Park, Ji-Ho;Oh, Eun-Joo;Cho, Dong-Woo;Cho, Kyung-Joo;Yu, Jung-Yeon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • Purpose: Heat transfer analysis of recently developed 'slim type double-skin system window' were presented. This window system is designed for curtain wall type façade that main energy loss factor of recent elegant buildings. And the double skin system is the dual window system integrated with inner shading component, enclosed gap space made by two windows when both windows were closed and shading component effectively reflect and terminate solar radiation from outdoor. Usually double-skin system requires much more space than normal window systems but this development has limited by 270mm, facilitated for curtain wall façade buildings. In this study, we estimated thermophysical phenomena of our double-skin curtain wall system window with solar load conditions at the summer season. Method: A fully 3-Dimentional analysis adopted for flow and convective and radiative heat transfer. The commercial CFD package were used to model the surface to surface radiation for opaque solid region of windows' frame, transparent glass, fluid region at inside of double-skin and indoor/outdoor environments. Result: Steep angle of solar incident occur at solar summer conditions. And this steep solar ray cause direct heat absorption from outside of frame surface rather than transmitted through the glass. Moreover, reflection effect of shading unit inside at the double-skin window system was nearly disappeared because of solar incident angle. With this circumstances, double-skin window system effectively cuts the heat transfer from outdoor to indoor due to separation of air space between outdoor and indoor with inner space of double-skin window system.

The Heating Performance Evaluation of Heating System with Building-Integrated Photovoltaic/Thermal Collectors (실험을 통한 건물통합형 태양광·열(BIPVT) 시스템의 난방성능 평가)

  • Jeong, Seon-Ok;Kim, Jin-Hee;Kim, Ji-Seong;Park, Se-Hyeon;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.113-119
    • /
    • 2012
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of PV module with a solar thermal collector which forms one device that produce thermal energy as well as electricity. In many studies various water type PVT collectors have been proposed in effort to increase their electrical and thermal efficiency. The aim of this study is to evaluate the heating performance of heating system combined with PVT collectors that on integrated building roof. For this study, the BIPVT system of 1.5kWp was installed at the experimental house, and it was incorporated with its heating system. From the experimental results, the solar fraction of the heating system with BIPVT was 15%. It was also found that was analyzed that the heating energy for the house can be reduced by 47%, as the heat gained from BIPVT system pre-heated the water used for heating system.