• Title/Summary/Keyword: Green's theorem

Search Result 63, Processing Time 0.018 seconds

A Potential-Based Panel Method for the Analysis of A Two-Dimensional Super-Cavitating Hydrofoil (양력판(揚力板) 이론(理論)에 의(依)한 2차원(次元) 수중익(水中翼)의 초월(超越) 공동(空洞) 문제(問題) 해석(解析))

  • Y.G. Kim;C.S. Lee;J.T. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.159-173
    • /
    • 1991
  • This paper describes a potential-based panel method formulated for the analysis of a super-cavitating two-dimensional hydrofoil. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring thats the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type. With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lilting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged. Characteristics of iteration and discretization of the present numerical method are much faster and more stable than the existing nonlinear theories. The theory shows good correlations with the existing theories and experimental results for the super-cavitating flow. In the region of small angles of attack, the present prediction shows and excellent comparison with the Geurst's linear theory. For the long cavity, the method recovers the trends of the Wu's nonlinear theory. In the intermediate regions of the short super-cavitation, the method compares very well with the experimental results of Parkin and also those of Silberman.

  • PDF

Free surface effects on 2-D airfoils and 3-D wings moving over water

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.245-264
    • /
    • 2016
  • The iterative boundary element method (IBEM) developed originally before for cavitating two-dimensional (2-D) and three-dimensional (3-D) hydrofoils moving under free surface is modified and applied to the case of 2-D (two-dimensional) airfoils and 3-D (three-dimensional) wings over water. The calculation of the steady-state flow characteristics of an inviscid, incompressible fluid past 2-D airfoils and 3-D wings above free water surface is of practical importance for air-assisted marine vehicles such as some racing boats including catamarans with hydrofoils and WIG (Wing-In-Ground) effect crafts. In the present paper, the effects of free surface both on 2-D airfoils and 3-D wings moving steadily over free water surface are investigated in detail. The iterative numerical method (IBEM) based on the Green's theorem allows separating the airfoil or wing problems and the free surface problem. Both the 2-D airfoil surface (or 3-D wing surface) and the free surface are modeled with constant strength dipole and constant strength source panels. While the kinematic boundary condition is applied on the airfoil surface or on the wing surface, the linearized kinematic-dynamic combined condition is applied on the free surface. The source strengths on the free surface are expressed in terms of perturbation potential by applying the linearized free surface conditions. No radiation condition is enforced for downstream boundary in 2-D airfoil and 3-D wing cases and transverse boundaries in only 3-D wing case. The method is first applied to 2-D NACA0004 airfoil with angle of attack of four degrees to validate the method. The effects of height of 2-D airfoil from free surface and Froude number on lift and drag coefficients are investigated. The method is also applied to NACA0015 airfoil for another validation with experiments in case of ground effect. The lift coefficient with different clearance values are compared with those of experiments. The numerical method is then applied to NACA0012 airfoil with the angle of attack of five degrees and the effects of Froude number and clearance on the lift and drag coefficients are discussed. The method is lastly applied to a rectangular 3-D wing and the effects of Froude number on wing performance have been investigated. The numerical results for wing moving under free surface have also been compared with those of the same wing moving above free surface. It has been found that the free surface can affect the wing performance significantly.

The Nonlinear Motions of Cylinders(I) (주상체의 비선형 운동(I) -강제동요문제, 조파저항문제-)

  • H.Y. Lee;J.H. Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.114-131
    • /
    • 1992
  • In the present work, a two-dimensional boundary-value problem for a large amplitude motion is treated as an initial-value problem by satisfying the exact body-boundary and nonlinear free-surface boundary conditions. The present nonlinear numerical scheme is similar to that described by Vinje and Brevig(1981) who utilized the Cauchy's theorem and assumed the periodicity in the horizontal coordinate. In the present thesis, however, the periodicity in the horizontal coordinate is not assumed. Thus the present method can treat more realistic problems, which allow radiating waves to infinities. In the present method of solution, the original infinite fluid domain, is divided into two subdomains ; ie the inner and outer subdomains which are a local nonlinear subdomain and the truncated infinite linear subdomain, respectively. By imposing an appropriate matching condition, the computation is carried out only in the inner domain which includes the body. Here we adopt the nonlinear scheme of Vinje & Brevig only in the inner domain and respresent the solution in the truncated infinite subdomains by distributing the time-dependent Green function on the matching boundaries. The matching condition is that the velocity potential and stream function are required to be continuous across the matching boundary. In the computations we used, if necessary, a regriding algorithm on the free surface which could give converged stable solutions successfully even for the breaking waves. In harmonic oscillation problem, each harmonic component and time-mean force are obtained by the Fourier transform of the computed forces in the time domain. The numerical calculations are made for the following problems. $\cdot$ Forced harmonic large-amplitude oscillation(${\omega}{\neq}0,\;U=0$) $\cdot$ Translation with a uniform speed(${\omega}=0,\;U{\neq}0$) The computed results are compared with available experimental data and other analytical results.

  • PDF