• Title/Summary/Keyword: Grazing impact

Search Result 44, Processing Time 0.032 seconds

Impact of Salt Intake on Red and Fallow Deer Production in Australia - Review -

  • Ru, Y.J.;Glatz, P.C.;Miao, Z.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1779-1787
    • /
    • 2000
  • Southern and south-western Australia is a typical mediterranean environment, characterised by wet, cold winters and dry, hot summers. The evaporation rate varies significantly in summer, resulting in a high salinity of drinking water for grazing animals. In addition, a large amount of land in the cropping areas is affected by salt. Puccinellia, tall wheat grass and saltbushes have been planted to improve the soil condition and to supply feed for grazing animals. Animals grazing these areas often ingest an excessive amount of salt from soil, forage and drinking water which can reduce feed intake, increase the water requirement, depress growth and affect body composition as demonstrated in sheep. While the deer industry has been successfully developed in these regions, the potential impact of excessive salt intake on deer production is unknown. The salt tolerance has been well defined for sheep, cattle and other livestock species, but the variation between animal species, breeds within species, maturity status and grazing environments makes it impossible to apply these values directly to deer. To optimise deer production and effectively use natural resources, it is essential to understand the salt status of grazing deer and the impact of excessive salt intake on growth and reproduction of deer.

Effect of Restricted Grazing Time on the Foraging Behavior and Movement of Tan Sheep Grazed on Desert Steppe

  • Chen, Yong;Luo, Hailing;Liu, Xueliang;Wang, Zhenzhen;Zhang, Yuwei;Liu, Kun;Jiao, Lijuan;Chang, Yanfei;Zuo, Zhaoyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.711-715
    • /
    • 2013
  • To investigate the effect of restricted grazing time on behavior of Tan sheep on desert steppe, forty 4-months old male Tan sheep with an original body weight (BW) of $15.62{\pm}0.33$ kg were randomly allocated to 4 grazing groups which corresponded to 4 different restricted grazing time treatments of 2 h/d (G2), 4 h/d (G4), 8 h/d (G8) and 12 h/d (G12) access to pasture. The restricted grazing times had a significant impact on intake time, resting time, ruminating time, bite rate and movement. As the grazing time decreased, the proportion of time spent on intake, bite rate and grazing velocity significantly (p<0.05) increased, but resting and ruminating time clearly (p<0.05) decreased. The grazing months mainly depicted effect on intake time and grazing velocity. In conclusion, by varying their foraging behavior, Tan sheep could improve grazing efficiency to adapt well to the time-limited grazing circumstance.

Interaction between Invertebrate Grazers and Seaweeds in the East Coast of Korea (동해안 조식성 무척추동물과 해조류 간 상호작용)

  • Yoo, J.W.;Kim, H.J.;Lee, H.J.;Lee, C.G.;Kim, C.S.;Hong, J.S.;Hong, J.P.;Kim, D.S.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.125-132
    • /
    • 2007
  • We estimated the distribution of predator-prey interaction strengths for 12 species of herbivores (including amphipods, isopods, gastropods, and sea urchins) and made a regression model that may be applicable to other species. Laboratory experiments were used to determine per capita grazing rate (PCGR; g seaweeds/individual/day). Relationship between the biomass of individual grazers and fourth-root transformed PCGR was fitted to power curve ($y=0.2310x^{0.3290}$, r=0.8864). This finding supported that the grazing efficiency was not even as individual grazers increase in size (biomass). Therefore, the biomass-normalized PCGR was estimated and revealed that smaller size herbivores were more effective grazers. Grazing impact considering density of each taxon was calculated. The sea hare Aplysia kurodai had greatest grazing impact on the seaweed bed and the sea urchin Strongylocentrotus nudus and S. intermedius were ranked in descending order of the impact. The amount of seaweed grazed by the amphipod Elasmopus sp. (>4,000 $ind./m^2$) and Jassa falcata (>2,000 $ind./m^2$) were 3.435 and $1.697mg/m^2/day$ respectively. The combined grazing amount of herbivores was $5,045mg/m^2/day$ in the seaweed bed. Although sea hare and sea urchin had strong impacts on seaweeds, the effects of dense, smaller species could not be seen as negligible. Surprisingly, the calculated grazing potential of sea urchins with a mean density of 3 $ind./m^2$ exceeded the mean production of seaweed cultured in domestic coastal waters in Korea (ca., 5 ton/ha). Small crustaceans were also expected to consume up to 16% of the seaweed production if their densities were rising under weak predation conditions. Considering that the population density of herbivores are strongly controlled by fish, human interference like overfishing may have strong negative effects on persistence of seaweeds communities.

Effect of stocker management program on beef cattle skeletal muscle growth characteristics, satellite cell activity, and paracrine signaling impact on preadipocyte differentiation

  • Vaughn, Mathew A.;Lancaster, Phillip A.;Roden, Kelly C.;Sharman, Evin D.;Krehbiel, Clinton R.;Horn, Gerald W.;Starkey, Jessica D.
    • Journal of Animal Science and Technology
    • /
    • v.61 no.5
    • /
    • pp.260-271
    • /
    • 2019
  • The objective of this study was to determine the effect of different stocker management programs on skeletal muscle development and growth characteristics, satellite cell (SC) activity in growing-finishing beef cattle as well as the effects of SC-conditioned media on preadipocyte gene expression and differentiation. Fall-weaned Angus steers (n = 76; $258{\pm}28kg$) were randomly assigned to 1 of 4 stocker production systems: 1) grazing dormant native range (NR) supplemented with a 40% CP cottonseed meal-based supplement ($1.02kg{\cdot}steer^{-1}{\cdot}d^{-1}$) followed by long-season summer grazing (CON, 0.46 kg/d); 2) grazing dormant NR supplemented with a ground corn and soybean meal-based supplement fed at 1% of BW followed by short-season summer grazing (CORN, 0.61 kg/d); 3) grazing winter wheat pasture (WP) at high stocking density (3.21 steers/ha) to achieve a moderate rate of gain (LGWP, 0.83 kg/d); and 4) grazing winter WP at low stocking density (0.99 steers/ha) to achieve a high rate of gain (HGWP, 1.29 kg/d). At the end of the stocker (intermediate harvest, IH) and finishing (final harvest, FH) phases, 4 steers / treatment were harvested and longissimus muscles (LM) sampled for cryohistological immunofluorescence analysis and SC culture assays. At IH, WP steers had greater LM fiber cross-sectional area than NR steers; however, at FH, the opposite was observed (p < 0.0001). At IH, CORN steers had the lowest Myf-5+:Pax7+ SC density (p = 0.020), while LGWP steers had the most Pax7+ SC (p = 0.043). At FH, CON steers had the highest LM capillary density (p = 0.003) and their cultured SC differentiated more readily than all other treatments (p = 0.017). At FH, Pax7 mRNA was more abundant in 14 d-old SC cultures from HGWP cattle (p = 0.03). Preadipocytes exposed to culture media from proliferating SC cultures from WP cattle isolated at FH had more $PPAR{\gamma}$ (p = 0.037) and less FABP4 (p = 0.030) mRNA expression compared with NR cattle. These data suggest that different stocker management strategies can impact skeletal muscle growth, SC function, and potentially impact marbling development in growing-finishing beef cattle.

Molecular dynamics study on initial growth behavior of amorphous carbon film under various incidence angles

  • Joe, Min-Woong;Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.310-310
    • /
    • 2011
  • Morphological evolution of amorphous carbon film is investigated by molecular dynamics simulation. Here, energetic carbon atoms (75 eV) are deposited on the diamond (001) substrate to find effect of incidence angles. At normal and near-normal incidences ($0^{\circ}{\sim}30^{\circ}$) atomically smooth surfaces are observed during their growth. However, rough surfaces emerge and develop into a ripple structure at grazing incidences ($60^{\circ}{\sim}70^{\circ}$). The different growth modes according to the incidence angles can be described by impact-induced displacements of atoms. Downhill transport along any sloped surfaces is predominant for the case of normal incidence. As the incidence angles become grazing, uphill transport is allowed along the surfaces, which have smaller slopes than incidence angle, so the surface features can be amplified. Impact-induced transport and self-shadowing effect can be responsible to the initial growth of seeding structures at a grazing incidence, which would be grown up as tilted columnar structures in further depositions.

  • PDF

Application of AGNPS Water Quality Computer Simulation Model to a Cattle Grazing Pasture

  • Jeon, Woo-Jeong;Parajuli, P.;Yoo, K.-H.
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.83-93
    • /
    • 2003
  • This research compared the observed and model predicted results that include; runoff, sediment yield, and nutrient losses from a 2.71 ha cattle grazing pasture field in North Alabama. Application of water quality computer simulation models can inexpensively and quickly assess the impact of pasture management practices on water quality. AGNPS single storm based model was applied to the three pasture species; Bermudagrass, fescue, and Ryegrass. While comparing model predicted results with observed data, it showed that model can reasonably predict the runoff, sediment yield and nutrient losses from the watershed. Over-prediction and under-prediction by the model occurred during very high and low rainfall events, respectively. The study concluded that AGNPS model can be reasonably applied to assess the impacts of pasture management practices and chicken litter application on water quality.

Impact of an AI Heifer Calf Rearing Scheme on Dairy Stock Development in the Western Province of Sri Lanka

  • Nettisinghe, A.M.P.;Udo, H.M.J.;Steenstra, F.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.18-26
    • /
    • 2004
  • This study evaluated the impact of an AI heifer calf rearing scheme on dairy stock development, in a coconut grazing and a peri-urban smallholder dairy production system in the Western Province of Sri Lanka. The heifer rearing scheme included free advice on calf rearing, drugs, acaricides, minerals and subsidised concentrates for 30 months. The farmers in the coconut growing area integrate dairying with their plantation, they sell their milk to the main processors. The peri-urban farmers are intensive milk producers, who sell their milk at informal markets. To estimate the effect of the heifer rearing scheme on dairy replacement stock development, scheme farmers were compared with farmers who did not participate in the scheme. Calf mortality was twice as high in non-scheme farms (23-28%) as in scheme farms (12-14%). The scheme had a positive effect on weight development and scheme heifers calved 4.5 months earlier than non-scheme heifers. The calf rearing package is cost effective in both farming systems, however, the required cash inputs are a major constraint. The costs per in-calf heifer under the scheme are much lower than the production of such animals by either multiplication in state farms or importing them. The coconut grazing system showed the highest potential for producing surplus dairy stock.

Effect of Salt Level in Water on Feed Intake and Growth Rate of Red and Fallow Weaner Deer

  • Ru, Y.J.;Glatz, P.C.;Bao, Y.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.32-37
    • /
    • 2005
  • Under a typical Mediterranean environment in southern Australia, the evaporation rate increases significantly in hot summers, resulting in highly saline drinking water for grazing animals. Also in the cropping areas, dryland salinity is a problem. Grazing animals under these environments can ingest excessive amount of salt from feed, drinking water and soil, which can lead to a reduction in growth rate. To understand the impact of high salt intake on grazing deer, two experiments were conducted to assess the effect of salt levels in drinking water on feed intake and growth rate of red and fallow weaner deer. The results revealed that fallow deer did not show any abnormal behaviour or sickness when salt level in drinking water was increased from 0% to 2.5%. Feed intake was not affected until the salt content in water exceeded 1.5%. Body weight gain was not affected by 1.2% salt in drinking water, but was reduced as salt content in water increased. Compared with deer on fresh water, the feed intake of red deer on saline water was 11-13% lower when salt level in drinking water was 0.4-0.8%. An increase in salt level in water up to 1% resulted in about a 30% reduction in feed intake (p<0.01). Body weight gain was significantly (p=0.004) reduced when salt level reached 1.2%. The deer on 1% salt tended to have a higher (p=0.052) osmotic pressure in serum. The concentration of P, K, Mg and S in serum was affected when salt level in water was over 1.0%. The results suggested that the salt level in drinking water should be lower than 1.2% for fallow weaner deer and 0.8% for red weaner deer to avoid any reduction in feed intake. Deer farmers need to regularly test the salt levels in drinking water on their farms to ensure that the salt intake of grazing deer is not over the levels that deer can tolerate.

Acacia Dominated Area Exclosures Enhance the Carbon Sequestration Potential of Degraded Dryland Forest Ecosystems

  • Halefom, Zenebu;Kebede, Fassil;Fitwi, Ibrahim;Abraha, Zenebe;Gebresamuel, Girmay;Birhane, Emiru
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • Area exclosure is a widely practiced intervention of restoring degraded lands though its impact in sequestering terrestrial and soil carbon is scanty. The study was initiated to investigate the effect of exclosure of different ages on carbon sequestration potential of restoring degraded dryland ecosystems in eastern Tigray, northern Ethiopia. Twelve plots each divided into three layers were randomly selected from 5, 10 and 15 years old exclosures and paired adjacent open grazing land. Tree and shrub biomasses were determined using destructive sampling while herb layer biomass was determined using total harvest. The average total biomass obtained were 13.6, 24.8, 27.1, and 55.5 Mg ha-1 for open grazing, 5 years, 10 years, and 15 years exclosures respectively. The carbon content of plant species ranged between 48 to 53 percent of a dry biomass. The total carbon stored in the 5 years, 10 years and 15 years age exclosures were 39 Mg C ha-1, 46.3 Mg C ha-1, and 64.6 Mg C ha-1 respectively while in the open grazing land the value was 24.7 Mg C ha-1. Carbon stock is age dependent and increases with age. The difference in total carbon content between exclosures and open grazing land varied between 14.3-40 Mg C ha-1. Although it is difficult to extrapolate this result for a longer future, the average annual carbon being sequestered in the oldest exclosure was about 2.7 Mg C ha-1 yr-1. In view of improving degraded area and sequestering carbon, area exclosures are promising options.

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms

  • Lim, An Suk;Jeong, Hae Jin;Seong, Kyeong Ah;Lee, Moo Joon;Kang, Nam Seon;Jang, Se Hyeon;Lee, Kyung Ha;Park, Jae Yeon;Jang, Tae Young;Yoo, Yeong Du
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.199-222
    • /
    • 2017
  • Occurrence of Cochlodinium polykrikoides red tides have resulted in considerable economic losses in the aquaculture industry in many countries, and thus predicting the process of C. polykrikoides red tides is a critical step toward minimizing those losses. Models predicting red tide dynamics define mortality due to predation as one of the most important parameters. To investigate the roles of heterotrophic protists in red tide dynamics in the South Sea of Korea, the abundances of heterotrophic dinoflagellates (HTDs), tintinnid ciliates (TCs), and naked ciliates (NCs) were measured over one- or two-week intervals from May to Nov 2014. In addition, the grazing impacts of dominant heterotrophic protists on each red tide species were estimated by combining field data on red tide species abundances and dominant heterotrophic protist grazers with data obtained from the literature concerning ingestion rates of the grazers on red tide species. The abundances of HTDs, TCs, and NCs over the course of this study were high during or after red tides, with maximum abundances of 82, 49, and $35cells\;mL^{-1}$, respectively. In general, the dominant heterotrophic protists differed when different species caused red tides. The HTDs Polykrikos spp. and NCs were abundant during or after C. polykrikoides red tides. The mean and maximum calculated grazing coefficients of Polykrikos spp. and NCs on populations of co-occurring C. polykrikoides were $1.63d^{-1}$ and $12.92d^{-1}$, respectively. Moreover, during or after red tides dominated by the phototrophic dinoflagellates Prorocentrum donghaiense, Ceratium furca, and Alexandrium fraterculus, which formed serial red tides prior to the occurrence of C. polykrikoides red tides, the HTDs Gyrodinium spp., Polykrikos spp., and Gyrodinium spp., respectively were abundant. The maximum calculated grazing coefficients attributable to dominant heterotrophic protists on co-occurring P. donghaiense, C. furca, and A. fraterculus were 13.12, 4.13, and $2.00d^{-1}$, respectively. Thus, heterotrophic protists may sometimes have considerable potential grazing impacts on populations of these four red tide species in the study area.