• Title/Summary/Keyword: Gray level selection

Search Result 18, Processing Time 0.032 seconds

Selection Method of Multiple Threshold Based on Probability Distribution function Using Fuzzy Clustering (퍼지 클러스터링을 이용한 확률분포함수 기반의 다중문턱값 선정법)

  • Kim, Gyung-Bum;Chung, Sung-Chong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.48-57
    • /
    • 1999
  • Applications of thresholding technique are based on the assumption that object and background pixels in a digital image can be distinguished by their gray level values. For the segmentation of more complex images, it is necessary to resort to multiple threshold selection techniques. This paper describes a new method for multiple threshold selection of gray level images which are not clearly distinguishable from the background. The proposed method consists of three main stages. In the first stage, a probability distribution function for a gray level histogram of an image is derived. Cluster points are defined according to the probability distribution function. In the second stage, fuzzy partition matrix of the probability distribution function is generated through the fuzzy clustering process. Finally, elements of the fuzzy partition matrix are classified as clusters according to gray level values by using max-membership method. Boundary values of classified clusters are selected as multiple threshold. In order to verify the performance of the developed algorithm, automatic inspection process of ball grid array is presented.

  • PDF

Threshold Selection Method Based on the Distribution of Gray Levels (그레이 레벨의 분포에 기반한 임계값 결정법)

  • Kwon, Soon-H.;Son, Seo-H.;Bae, Jong-I.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.649-654
    • /
    • 2003
  • Most of the conventional image thresholding methods are based on the histogram function of the gray values. In this paper, we present a simple but effective example showing that the histogram-based thresholding methods do not perform well. To overcome the difficulty, the authors propose a new gray level threshold selection method based on the distribution of gray levels in images. Finally, we provide simulation results showing the effectiveness of the proposed threshold selection method through several examples.

Threshold Selection Method in Gray Images Based on Interval-Valued Fuzzy Sets (구간값 퍼지집합을 이용한 그레이 영상에서의 임계값 선택방법)

  • Son, Chang-S.;Chung, Hwan-M.;Seo, Suk-T.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.443-450
    • /
    • 2007
  • In this paper, we propose a novel threshold selection method based on statistical information on gray-levels of given images and interval-valued fuzzy sets. In the proposed threshold selection method, the interval-valued fuzzy set is used to represent more definitely the relationship between a pixel and its belonging region, that is, the object and the background. Also the statistical information on gray-level is used to determine the rules and partitions of interval-valued fuzzy sets. To show the validity of the proposed method, we compared the performance of the proposed with those of conventional methods such as Otsu's method, Huang and Wang's method applied to 5 test images with various types of histograms.

Multilevel Threshold Selection Method Based on Gaussian-Type Finite Mixture Distributions (가우시안형 유한 혼합 분포에 기반한 다중 임계값 결정법)

  • Seo, Suk-T.;Lee, In-K.;Jeong, Hye-C.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.725-730
    • /
    • 2007
  • Gray-level histogram-based threshold selection methods such as Otsu's method, Huang and Wang's method, and etc. have been widely used for the threshold selection in image processing. They are simple and effective, but take too much time to determine the optimal multilevel threshold values as the number of thresholds are increased. In this paper, we measure correlation between gray-levels by using the Gaussian function and define a Gaussian-type finite mixture distribution which is combination of the Gaussian distribution function with the gray-level histogram, and propose a fast and effective threshold selection method using it. We show the effectiveness of the proposed through experimental results applied it to three images and the efficiency though comparison of the computational complexity of the proposed with that of Otsu's method.

Reduction of Dynamic False Contours based on Gray Level Selection method in PDP (계조 수 감소를 이용한 PDP내에서 의사 윤곽 제거 기법)

  • Ahn Sang-Jun;Eo Yoon-Phil;Lee Sang-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.716-725
    • /
    • 2005
  • In this paper, we propose a new approach for the reduction of the dynamic false contours, which detects and compensates false contour artifacts adaptively. First, we develop a simple but effective method to select the pixels that are likely to cause the motion artifacts, based on the distribution of pixel values. Then, we merge the selected pixels into several regions using tree structure. Next, we reduce number of gray levels within the regions slightly to reduce the false contours. Note that reducing number of gray levels yield the distortion, thus it is applied only to the selected regions, instead of the whole picture. Intensive simulations on real moving image show that the proposed algorithm alleviates the dynamic false contours effectively with tolerable computational complexity.

Comparison of Feature Selection Processes for Image Retrieval Applications

  • Choi, Young-Mee;Choo, Moon-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1544-1548
    • /
    • 2011
  • A process of choosing a subset of original features, so called feature selection, is considered as a crucial preprocessing step to image processing applications. There are already large pools of techniques developed for machine learning and data mining fields. In this paper, basically two methods, non-feature selection and feature selection, are investigated to compare their predictive effectiveness of classification. Color co-occurrence feature is used for defining image features. Standard Sequential Forward Selection algorithm are used for feature selection to identify relevant features and redundancy among relevant features. Four color spaces, RGB, YCbCr, HSV, and Gaussian space are considered for computing color co-occurrence features. Gray-level image feature is also considered for the performance comparison reasons. The experimental results are presented.

A study of trabecular bone strength and morphometric analysis of bone microstructure from digital radiographic image (디지털방사선영상에서 추출한 해면질골의 강도와 미세구조의 형태계측학적 분석에 대한 연구)

  • Han Seung-Yun;Lee Sun-Bok;Oh Sung-Ook;Heo Min-Suk;Lee Sam-Sun;Choi Soon-Chul;Park Tae-Won;Kim Jong-Dae
    • Imaging Science in Dentistry
    • /
    • v.33 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • Purpose : To evaluate the relationship between morphometric analysis of bone microstructure from digital radiographic image and trabecular bone strength. Materials and Methods : One hundred eleven bone specimens with 5 mm thickness were obtained from the mandibles of 5 pigs. Digital images of specimens were taken using a direct digital intraoral radiographic system. After selection of ROI (100 × 100 pixel) within the trabecular bone, mean gray level and standard deviation were obtained. Fractal dimension and the variants of morphometric analysis (trabecular area, periphery, length of skeletonized trabeculae, number of terminal point, number of branch point) were obtained from ROI. Punch sheer strength analysis was performed using Instron (model 4465, Instron Corp., USA). The loading force (loading speed 1 mm/min) was applied to ROI of bone specimen by a 2 mm diameter punch. Stress-deformation curve was obtained from the punch sheer strength analysis and maximum stress, yield stress, Young's modulus were measured. Results: Maximum stress had a negative linear correlation with mean gray level and fractal dimension significantly (p<0.05). Yield stress had a negative linear correlation with mean gray level, periphery, fractal dimension and the length of skeletonized trabeculae significantly (p < 0.05). Young's modulus had a negative linear correlation with mean gray level and fractal dimension significantly (p < 0.05). Conclusions : The strength of cancellous bone exhibited a significantly linear relationship between mean gray level, fractal dimension and morphometric analysis. The methods described above can be easily used to evaluate bone quality clinically.

  • PDF

A Study on Classification and Recognition of Textured Imaged Using Autoregressive Model (자기회귀 모델을 이용한 무늬영상의 분류 및 인식에 관한 연구)

  • 이채헌;한백룡;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.1
    • /
    • pp.38-57
    • /
    • 1989
  • This paper presents a method for selection of features suitable for classification of textured images. The statial interaction of gray levels in a neighborhood N is modeled by autoregressive function. The estimates of the model parameters are taken as textural features is done least square method. This method can be classificated biocell images. Experimental studies involving ten different types of biocell textures yeild 92-percent classification accuracy.

  • PDF

Inspection of Automotive Oil-Seals Using Artificial Neural Network and Vision System (인공신경망과 비전 시스템을 이용한 자동차용 오일씰의 검사)

  • 노병국;김기대
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.83-88
    • /
    • 2004
  • The Classification of defected oil-seals using a vision system with the artificial neural network is presented. The artificial neural network fur classification consists of 27 input nodes, 10 hidden nodes, and one output node. The selection of the number of the input nodes is based on an observation that the difference among the defected, non-defected, and smeared oil-seals is greatly pronounced in the 26 step gray-scale level thresholding. The number of the hidden nodes is chosen as a result of a trade-off between accuracy and computing time. The back-propagation algorithm is used for teaching the network. The proposed network is capable of successfully classifying the defected from the smeared oil-seals which tend to be classified as the defected ones using the binary thresholding. It is envisaged that the proposed method improves the reliability and productivity of the automotive vision inspection system.

Segmentation of Millimeter-wave Radiometer Image via Classuncertainty and Region-homogeneity

  • Singh, Manoj Kumar;Tiwary, U.S.;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.862-864
    • /
    • 2003
  • Thresholding is a popular image segmentation method that converts a gray-level image into a binary image. The selection of optimum threshold has remained a challenge over decades. Many image segmentation techniques are developed using information about image in other space rather than the image space itself. Most of the technique based on histogram analysis information-theoretic approaches. In this paper, the criterion function for finding optimal threshold is developed using an intensity-based classuncertainty (a histogram-based property of an image) and region-homogeneity (an image morphology-based property). The theory of the optimum thresholding method is based on postulates that objects manifest themselves with fuzzy boundaries in any digital image acquired by an imaging device. The performance of the proposed method is illustrated on experimental data obtained by W-band millimeter-wave radiometer image under different noise level.

  • PDF