• Title/Summary/Keyword: Gray Scale Image

Search Result 254, Processing Time 0.026 seconds

A Study on an Open/Closed Eye Detection Algorithm for Drowsy Driver Detection (운전자 졸음 검출을 위한 눈 개폐 검출 알고리즘 연구)

  • Kim, TaeHyeong;Lim, Woong;Sim, Donggyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.67-77
    • /
    • 2016
  • In this paper, we propose an algorithm for open/closed eye detection based on modified Hausdorff distance. The proposed algorithm consists of two parts, face detection and open/closed eye detection parts. To detect faces in an image, MCT (Modified Census Transform) is employed based on characteristics of the local structure which uses relative pixel values in the area with fixed size. Then, the coordinates of eyes are found and open/closed eyes are detected using MHD (Modified Hausdorff Distance) in the detected face region. Firstly, face detection process creates an MCT image in terms of various face images and extract criteria features by PCA(Principle Component Analysis) on offline. After extraction of criteria features, it detects a face region via the process which compares features newly extracted from the input face image and criteria features by using Euclidean distance. Afterward, the process finds out the coordinates of eyes and detects open/closed eye using template matching based on MHD in each eye region. In performance evaluation, the proposed algorithm achieved 94.04% accuracy in average for open/closed eye detection in terms of test video sequences of gray scale with 30FPS/$320{\times}180$ resolution.

Design and Implementation of Efficient Decoder for Fractal-based Compressed Image (효율적 프랙탈 영상 압축 복호기의 설계 및 구현)

  • Kim, Chun-Ho;Kim Lee-Sup
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.11-19
    • /
    • 1999
  • Fractal image compression algorithm has been studied mostly not in the view of hardware but software. However, a general processor by software can't decode fractal compressed images in real-time. Therefore, it is necessary that we develop a fast dedicated hardware. However, design examples of dedicated hardware are very rare. In this paper, we designed a quadtree fractal-based compressed image decoder which can decode $256{\times}256$ gray-scale images in real-time and used two power-down methods. The first is a hardware-optimized simple post-processing, whose role is to remove block effect appeared after reconstruction, and which is easier to be implemented in hardware than non-2' exponents weighted average method used in conventional software implementation, lessens costs, and accelerates post-processing speed by about 69%. Therefore, we can expect that the method dissipates low power and low energy. The second is to design a power dissipation in the multiplier can be reduced by about 28% with respect to a general array multiplier which is known efficient for low power design in the size of 8 bits or smaller. Using the above two power-down methods, we designed decoder's core block in 3.3V, 1 poly 3 metal, $0.6{\mu}m$ CMOS technology.

  • PDF

Model Simulation for Assessment of Image Acquisition Errors Affecting Electron Tomography (영상 자료 획득시의 오류가 전자토모그래피 결과에 미치는 영향 고찰-모델 시뮬레이션을 중심으로)

  • Jou, Hyeong-Tae ;Lee, Su-Jeong;Kim, Youn-Joong;Suk, Bong-Chool
    • Applied Microscopy
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2008
  • This simulation study examined the effect of data acquisition error including the data type of TEM image, and incident beam intensity of the tilt series on 3D tomograms. Simulation was performed with the 3D head phantom model of Kak and Slaney, and the slightly modified 3D head phantom model with enhanced difference in absorption coefficients. Reconstructed tomogram for the original head phantom model using 8-bit gray-scale image was distorted with extremely high level of noise, while an acceptable result was obtained for the modified model. The results for the original model using wrong formulation for the transmitted beam intensity was proved to be incorrect. The high level of noise along the z direction was found in case of the modified model. On the other hand, the wrong value of incident beam intensity in both models gave distorted results. In order to reconstruct an artifacts-free 3D structure from the projections with invisible features in electron tomography, the 16-bit projection images should be used with the correct incident beam intensity which is applied to Beer's law.

Development of Facial Expression Recognition System based on Bayesian Network using FACS and AAM (FACS와 AAM을 이용한 Bayesian Network 기반 얼굴 표정 인식 시스템 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.562-567
    • /
    • 2009
  • As a key mechanism of the human emotion interaction, Facial Expression is a powerful tools in HRI(Human Robot Interface) such as Human Computer Interface. By using a facial expression, we can bring out various reaction correspond to emotional state of user in HCI(Human Computer Interaction). Also it can infer that suitable services to supply user from service agents such as intelligent robot. In this article, We addresses the issue of expressive face modeling using an advanced active appearance model for facial emotion recognition. We consider the six universal emotional categories that are defined by Ekman. In human face, emotions are most widely represented with eyes and mouth expression. If we want to recognize the human's emotion from this facial image, we need to extract feature points such as Action Unit(AU) of Ekman. Active Appearance Model (AAM) is one of the commonly used methods for facial feature extraction and it can be applied to construct AU. Regarding the traditional AAM depends on the setting of the initial parameters of the model and this paper introduces a facial emotion recognizing method based on which is combined Advanced AAM with Bayesian Network. Firstly, we obtain the reconstructive parameters of the new gray-scale image by sample-based learning and use them to reconstruct the shape and texture of the new image and calculate the initial parameters of the AAM by the reconstructed facial model. Then reduce the distance error between the model and the target contour by adjusting the parameters of the model. Finally get the model which is matched with the facial feature outline after several iterations and use them to recognize the facial emotion by using Bayesian Network.

Location Information Hiding Way Of HD Black Box Recording process (HD 블랙박스 녹화과정에서의 위치정보 은익방법)

  • Seok, Jin-Hwan;Yoon, Jong-Chul;Hong, Jong-Sung;Han, Chan-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • GPS location information storage included in the HD black box is using a unique manner for each manufacturer does not have a specific standard. In this paper, in order to overcome the limitations of the storage space and thereby the image quality according to store GPS position information deteriorate to solve the problems that cause, we propose the location information concealment method included in the HDTV video content using a essential hidden region. HDTV video content is a Border Extender of 8 lines in the frame to the bottom of the compression will be required. This was inserted into the image of a gray scale used in block form in order to space the current position information is concealed to prevent image degradation. The proposed method was confirmed using real HD black box, there are more difficult to interpret the format of the ASCII code re-edit the location information when the compression effect disappears with the existing security zones added. Therefore, the proposed method is suitable for location-based services, such as Facebook or Youtube videos.

Research on Characterizing Urban Color Analysis based on Tourists-Shared Photos and Machine Learning - Focused on Dali City, China - (관광객 공유한 사진 및 머신 러닝을 활용한 도시 색채 특성 분석 연구 - 중국 대리시를 대상으로 -)

  • Yin, Xiaoyan;Jung, Taeyeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.39-50
    • /
    • 2024
  • Color is an essential visual element that has a significant impact on the formation of a city's image and people's perceptions. Quantitative analysis of color in urban environments is a complex process that has been difficult to implement in the past. However, with recent rapid advances in Machine Learning, it has become possible to analyze city colors using photos shared by tourists. This study selected Dali City, a popular tourist destination in China, as a case study. Photos of Dali City shared by tourists were collected, and a method to measure large-scale city colors was explored by combining machine learning techniques. Specifically, the DeepLabv3+ model was first applied to perform a semantic segmentation of tourist sharing photos based on the ADE20k dataset, thereby separating artificial elements in the photos. Next, the K-means clustering algorithm was used to extract colors from the artificial elements in Dali City, and an adjacency matrix was constructed to analyze the correlations between the dominant colors. The research results indicate that the main color of the artificial elements in Dali City has the highest percentage of orange-grey. Furthermore, gray tones are often used in combination with other colors. The results indicated that local ethnic and Buddhist cultures influence the color characteristics of artificial elements in Dali City. This research provides a new method of color analysis, and the results not only help Dali City to shape an urban color image that meets the expectations of tourists but also provide reference materials for future urban color planning in Dali City.

Vibrotactile Space Mouse (진동촉각 공간 마우스)

  • Park, Jun-Hyung;Choi, Ye-Rim;Lee, Kwang-Hyung;Back, Jong-Won;Jang, Tae-Jeong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.337-341
    • /
    • 2008
  • This paper presents a vibrotactile space mouse which use pin-type vibrotactile display modules and a gyroscope chip. This mouse is a new interface device which is not only an input device as an ordinary space mouse but also a tactile output device. It consists of a space mouse which use gyroscope chip and vibrotactile display modules which have been developed in our own laboratory. Lately, by development of vibrotactile display modules which have small size and consume low power, vibrotactile displays are available in small sized embedded systems such as wireless mouses or mobile devices. Also, development of new sensors like miniature size gyroscope by MEMS technology enables manufacturing of a small space mouse which can be used in the air not in a plane. The vibrotactile space mouse proposed in this paper recognizes motion of a hand using the gyroscope chip and transmits the data to PC through Bluetooth. PC application receives the data and moves pointer. Also, 2 by 3 arrays of pin-type vibrotactile actuators are mounted on the front side of the mouse where fingers of a user's hand contact, and those actuators could be used to represent various information such as gray-scale of an image or Braille patterns for visually impared persons.

  • PDF

Webcam-Based 2D Eye Gaze Estimation System By Means of Binary Deformable Eyeball Templates

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.575-580
    • /
    • 2010
  • Eye gaze as a form of input was primarily developed for users who are unable to use usual interaction devices such as keyboard and the mouse; however, with the increasing accuracy in eye gaze detection with decreasing cost of development, it tends to be a practical interaction method for able-bodied users in soon future as well. This paper explores a low-cost, robust, rotation and illumination independent eye gaze system for gaze enhanced user interfaces. We introduce two brand-new algorithms for fast and sub-pixel precise pupil center detection and 2D Eye Gaze estimation by means of deformable template matching methodology. In this paper, we propose a new algorithm based on the deformable angular integral search algorithm based on minimum intensity value to localize eyeball (iris outer boundary) in gray scale eye region images. Basically, it finds the center of the pupil in order to use it in our second proposed algorithm which is about 2D eye gaze tracking. First, we detect the eye regions by means of Intel OpenCV AdaBoost Haar cascade classifiers and assign the approximate size of eyeball depending on the eye region size. Secondly, using DAISMI (Deformable Angular Integral Search by Minimum Intensity) algorithm, pupil center is detected. Then, by using the percentage of black pixels over eyeball circle area, we convert the image into binary (Black and white color) for being used in the next part: DTBGE (Deformable Template based 2D Gaze Estimation) algorithm. Finally, using DTBGE algorithm, initial pupil center coordinates are assigned and DTBGE creates new pupil center coordinates and estimates the final gaze directions and eyeball size. We have performed extensive experiments and achieved very encouraging results. Finally, we discuss the effectiveness of the proposed method through several experimental results.

Road Lane and Vehicle Distance Recognition using Real-time Analysis of Camera Images (카메라 영상의 실시간 분석에 의한 차선 및 차간 인식)

  • Kang, Moon-Seol;Kim, Yu-Sin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2665-2674
    • /
    • 2012
  • This paper propose the method to recognize the lanes and distance between cars in real-time which detects dangerous situations and helps safe driving in the actual road environment. First of all, it extracts the area of interest corresponding to roads and cars from the road image photographed by using the forward-looking camera. Through the hough transform for the area of interest, this study detects linear components and also selects the lane and conducts filtering by calculating probability. And through the shadow threshold analysis of the cars in front within the area of interest, it extracts the objects of cars in front and calculates the distance from cars in front. According to the result of applying the suggested technology to recognize the lane and distance between cars to the road situation for testing, it showed over 95% recognition rate; thus, it has been proved that it can respond to safe driving.

Pavement Crack Detection and Segmentation Based on Deep Neural Network

  • Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.9
    • /
    • pp.99-112
    • /
    • 2019
  • Cracks on pavement surfaces are critical signs and symptoms of the degradation of pavement structures. Image-based pavement crack detection is a challenging problem due to the intensity inhomogeneity, topology complexity, low contrast, and noisy texture background. In this paper, we address the problem of pavement crack detection and segmentation at pixel-level based on a Deep Neural Network (DNN) using gray-scale images. We propose a novel DNN architecture which contains a modified U-net network and a high-level features network. An important contribution of this work is the combination of these networks afforded through the fusion layer. To the best of our knowledge, this is the first paper introducing this combination for pavement crack segmentation and detection problem. The system performance of crack detection and segmentation is enhanced dramatically by using our novel architecture. We thoroughly implement and evaluate our proposed system on two open data sets: the Crack Forest Dataset (CFD) and the AigleRN dataset. Experimental results demonstrate that our system outperforms eight state-of-the-art methods on the same data sets.