• Title/Summary/Keyword: Gray Image

Search Result 1,036, Processing Time 0.021 seconds

A High Performance License Plate Recognition System (고속처리 자동차 번호판 인식시스템)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1352-1357
    • /
    • 2002
  • This Paper describes algorithm to extract license plates in vehicle images. Conventional methods perform preprocessing on the entire vehicle image to produce the edge image and binarize it. Hough transform is applied to the binary image to find horizontal and vertical lines, and the license plate area is extracted using the characteristics of license plates. Problems with this approach are that real-time processing is not feasible due to long processing time and that the license plate area is not extracted when lighting is irregular such as at night or when the plate boundary does not show up in the image. This research uses the gray level transition characteristics of license plates to verify the digit area by examining the digit width and the level difference between the background area the digit area, and then extracts the plate area by testing the distance between the verified digits. This research solves the problem of failure in extracting the license plates due to degraded plate boundary as in the conventional methods and resolves the problem of the time requirement by processing the real time such that practical application is possible. This paper Presents a power automated license plate recognition system, which is able to read license numbers of cars, even under circumstances, which are far from ideal. In a real-life test, the percentage of rejected plates wan 13%, whereas 0.4% of the plates were misclassified. Suggestions for further improvements are given.

Comparison of Texture Images and Application of Template Matching for Geo-spatial Feature Analysis Based on Remote Sensing Data (원격탐사 자료 기반 지형공간 특성분석을 위한 텍스처 영상 비교와 템플레이트 정합의 적용)

  • Yoo Hee Young;Jeon So Hee;Lee Kiwon;Kwon Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.683-690
    • /
    • 2005
  • As remote sensing imagery with high spatial resolution (e.g. pixel resolution of 1m or less) is used widely in the specific application domains, the requirements of advanced methods for this imagery are increasing. Among many applicable methods, the texture image analysis, which was characterized by the spatial distribution of the gray levels in a neighborhood, can be regarded as one useful method. In the texture image, we compared and analyzed different results according to various directions, kernel sizes, and parameter types for the GLCM algorithm. Then, we studied spatial feature characteristics within each result image. In addition, a template matching program which can search spatial patterns using template images selected from original and texture images was also embodied and applied. Probabilities were examined on the basis of the results. These results would anticipate effective applications for detecting and analyzing specific shaped geological or other complex features using high spatial resolution imagery.

A Two-Stage Learning Method of CNN and K-means RGB Cluster for Sentiment Classification of Images (이미지 감성분류를 위한 CNN과 K-means RGB Cluster 이-단계 학습 방안)

  • Kim, Jeongtae;Park, Eunbi;Han, Kiwoong;Lee, Junghyun;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.139-156
    • /
    • 2021
  • The biggest reason for using a deep learning model in image classification is that it is possible to consider the relationship between each region by extracting each region's features from the overall information of the image. However, the CNN model may not be suitable for emotional image data without the image's regional features. To solve the difficulty of classifying emotion images, many researchers each year propose a CNN-based architecture suitable for emotion images. Studies on the relationship between color and human emotion were also conducted, and results were derived that different emotions are induced according to color. In studies using deep learning, there have been studies that apply color information to image subtraction classification. The case where the image's color information is additionally used than the case where the classification model is trained with only the image improves the accuracy of classifying image emotions. This study proposes two ways to increase the accuracy by incorporating the result value after the model classifies an image's emotion. Both methods improve accuracy by modifying the result value based on statistics using the color of the picture. When performing the test by finding the two-color combinations most distributed for all training data, the two-color combinations most distributed for each test data image were found. The result values were corrected according to the color combination distribution. This method weights the result value obtained after the model classifies an image's emotion by creating an expression based on the log function and the exponential function. Emotion6, classified into six emotions, and Artphoto classified into eight categories were used for the image data. Densenet169, Mnasnet, Resnet101, Resnet152, and Vgg19 architectures were used for the CNN model, and the performance evaluation was compared before and after applying the two-stage learning to the CNN model. Inspired by color psychology, which deals with the relationship between colors and emotions, when creating a model that classifies an image's sentiment, we studied how to improve accuracy by modifying the result values based on color. Sixteen colors were used: red, orange, yellow, green, blue, indigo, purple, turquoise, pink, magenta, brown, gray, silver, gold, white, and black. It has meaning. Using Scikit-learn's Clustering, the seven colors that are primarily distributed in the image are checked. Then, the RGB coordinate values of the colors from the image are compared with the RGB coordinate values of the 16 colors presented in the above data. That is, it was converted to the closest color. Suppose three or more color combinations are selected. In that case, too many color combinations occur, resulting in a problem in which the distribution is scattered, so a situation fewer influences the result value. Therefore, to solve this problem, two-color combinations were found and weighted to the model. Before training, the most distributed color combinations were found for all training data images. The distribution of color combinations for each class was stored in a Python dictionary format to be used during testing. During the test, the two-color combinations that are most distributed for each test data image are found. After that, we checked how the color combinations were distributed in the training data and corrected the result. We devised several equations to weight the result value from the model based on the extracted color as described above. The data set was randomly divided by 80:20, and the model was verified using 20% of the data as a test set. After splitting the remaining 80% of the data into five divisions to perform 5-fold cross-validation, the model was trained five times using different verification datasets. Finally, the performance was checked using the test dataset that was previously separated. Adam was used as the activation function, and the learning rate was set to 0.01. The training was performed as much as 20 epochs, and if the validation loss value did not decrease during five epochs of learning, the experiment was stopped. Early tapping was set to load the model with the best validation loss value. The classification accuracy was better when the extracted information using color properties was used together than the case using only the CNN architecture.

Application of Texture Feature Analysis Algorithm used the Statistical Characteristics in the Computed Tomography (CT): A base on the Hepatocellular Carcinoma (HCC) (전산화단층촬영 영상에서 통계적 특징을 이용한 질감특징분석 알고리즘의 적용: 간세포암 중심으로)

  • Yoo, Jueun;Jun, Taesung;Kwon, Jina;Jeong, Juyoung;Im, Inchul;Lee, Jaeseung;Park, Hyonghu;Kwak, Byungjoon;Yu, Yunsik
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • In this study, texture feature analysis (TFA) algorithm to automatic recognition of liver disease suggests by utilizing computed tomography (CT), by applying the algorithm computer-aided diagnosis (CAD) of hepatocellular carcinoma (HCC) design. Proposed the performance of each algorithm was to comparison and evaluation. In the HCC image, set up region of analysis (ROA, window size was $40{\times}40$ pixels) and by calculating the figures for TFA algorithm of the six parameters (average gray level, average contrast, measure of smoothness, skewness, measure of uniformity, entropy) HCC recognition rate were calculated. As a result, TFA was found to be significant as a measure of HCC recognition rate. Measure of uniformity was the most recognition. Average contrast, measure of smoothness, and skewness were relatively high, and average gray level, entropy showed a relatively low recognition rate of the parameters. In this regard, showed high recognition algorithms (a maximum of 97.14%, a minimum of 82.86%) use the determining HCC imaging lesions and assist early diagnosis of clinic. If this use to therapy, the diagnostic efficiency of clinical early diagnosis better than before. Later, after add the effective and quantitative analysis, criteria research for generalized of disease recognition is needed to be considered.

Counterfeit Money Detection Algorithm based on Morphological Features of Color Printed Images and Supervised Learning Model Classifier (컬러 프린터 영상의 모폴로지 특징과 지도 학습 모델 분류기를 활용한 위변조 지폐 판별 알고리즘)

  • Woo, Qui-Hee;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.12
    • /
    • pp.889-898
    • /
    • 2013
  • Due to the popularization of high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy to make high-quality counterfeit money. However, the probability of detecting counterfeit money to the general public is extremely low and the detection device is expensive. In this paper, a counterfeit money detection algorithm using a general purpose scanner and computer system is proposed. First, the printing features of color printers are calculated using morphological operations and gray-level co-occurrence matrix. Then, these features are used to train a support vector machine classifier. This trained classifier is applied for identifying either original or counterfeit money. In the experiment, we measured the detection rate between the original and counterfeit money. Also, the printing source was identified. The proposed algorithm was compared with the algorithm using wiener filter to identify color printing source. The accuracy for identifying counterfeit money was 91.92%. The accuracy for identifying the printing source was over 94.5%. The results support that the proposed algorithm performs better than previous researches.

Automatic Liver Segmentation of a Contrast Enhanced CT Image Using a Partial Histogram Threshold Algorithm (부분 히스토그램 문턱치 알고리즘을 사용한 조영증강 CT영상의 자동 간 분할)

  • Kyung-Sik Seo;Seung-Jin Park;Jong An Park
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • Pixel values of contrast enhanced computed tomography (CE-CT) images are randomly changed. Also, the middle liver part has a problem to segregate the liver structure because of similar gray-level values of a pancreas in the abdomen. In this paper, an automatic liver segmentation method using a partial histogram threshold (PHT) algorithm is proposed for overcoming randomness of CE-CT images and removing the pancreas. After histogram transformation, adaptive multi-modal threshold is used to find the range of gray-level values of the liver structure. Also, the PHT algorithm is performed for removing the pancreas. Then, morphological filtering is processed for removing of unnecessary objects and smoothing of the boundary. Four CE-CT slices of eight patients were selected to evaluate the proposed method. As the average of normalized average area of the automatic segmented method II (ASM II) using the PHT and manual segmented method (MSM) are 0.1671 and 0.1711, these two method shows very small differences. Also, the average area error rate between the ASM II and MSM is 6.8339 %. From the results of experiments, the proposed method has similar performance as the MSM by medical Doctor.

T1-weighted MR Imaging of the Neonatal Brain at 3.0 Tesla: Comparison of Spin Echo, Fast Inversion Recovery, and Magnetization-prepared Three Dimensional Gradient Echo Techniques (3T 자기공명영상 장비에서 신생아 뇌의 T1 강조 영상: 스핀에코, 고속 역전회복, 자기화 삼차원 경사에코기법의 비교)

  • Jeong, Jee-Young;Yoo, So-Young;Jang, Kyung-Mi;Eo, Hong;Lee, Jung-Hee;Kim, Ji-Hye
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 2007
  • Purpose: The purpose of this study was to evaluate the usefulness of fast inversion recovery (FIR) and magnetization-prepared three dimensional gradient echo sequence (3D GRE) T1-weighted sequences for neonatal brain imaging compared with spin echo (SE) sequence in a 3T MR unit. Materials and Methods: T1-weighted axial SE, FIR and 3D GRE sequences were evaluated from 3T brain MR imaging in 20 neonates. The signal-to-noise ratio (SNR) of different tissues was measured and contrast-to-noise ratios (CNR) were determined and compared in each of the sequences. Visual analysis was carried out by grading gray-white matter differentiation, myelination, and artifacts. The Wilcoxon signed ranked test was used for evaluation of the statistical significance of CNR differences between the sequences. Results: Among the three sequences, the 3D GRE had the best SNRs. CNRs obtained with FIR and 3D GRE were statistically superior to those obtained with SE; these CNRs were better on the 3D GRE compared to the FIR. Gray to white matter differentiation and myelination were better delineated on the FIR and 3D GRE than the SE. However, motion artifacts were more commonly observed on the 3D GRE and flow-related artifacts of vessels were frequently seen on the FIR. Conclusion: FIR and 3D GRE are valuable alternative T1-weighted sequences to conventional SE imaging of the neonatal brain at 3T providing superior image quality.

  • PDF

An Efficient Face Region Detection for Content-based Video Summarization (내용기반 비디오 요약을 위한 효율적인 얼굴 객체 검출)

  • Kim Jong-Sung;Lee Sun-Ta;Baek Joong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.675-686
    • /
    • 2005
  • In this paper, we propose an efficient face region detection technique for the content-based video summarization. To segment video, shot changes are detected from a video sequence and key frames are selected from the shots. We select one frame that has the least difference between neighboring frames in each shot. The proposed face detection algorithm detects face region from selected key frames. And then, we provide user with summarized frames included face region that has an important meaning in dramas or movies. Using Bayes classification rule and statistical characteristic of the skin pixels, face regions are detected in the frames. After skin detection, we adopt the projection method to segment an image(frame) into face region and non-face region. The segmented regions are candidates of the face object and they include many false detected regions. So, we design a classifier to minimize false lesion using CART. From SGLD matrices, we extract the textual feature values such as Inertial, Inverse Difference, and Correlation. As a result of our experiment, proposed face detection algorithm shows a good performance for the key frames with a complex and variant background. And our system provides key frames included the face region for user as video summarized information.

Counterfeit Money Detection Algorithm using Non-Local Mean Value and Support Vector Machine Classifier (비지역적 특징값과 서포트 벡터 머신 분류기를 이용한 위변조 지폐 판별 알고리즘)

  • Ji, Sang-Keun;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.55-64
    • /
    • 2013
  • Due to the popularization of digital high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy for anyone to make a high-quality counterfeit money. However, the probability of detecting a counterfeit money to the general public is extremely low. In this paper, we propose a counterfeit money detection algorithm using a general purpose scanner. This algorithm determines counterfeit money based on the different features in the printing process. After the non-local mean value is used to analyze the noises from each money, we extract statistical features from these noises by calculating a gray level co-occurrence matrix. Then, these features are applied to train and test the support vector machine classifier for identifying either original or counterfeit money. In the experiment, we use total 324 images of original money and counterfeit money. Also, we compare with noise features from previous researches using wiener filter and discrete wavelet transform. The accuracy of the algorithm for identifying counterfeit money was over 94%. Also, the accuracy for identifying the printing source was over 93%. The presented algorithm performs better than previous researches.

3T MR Spin Echo T1 Weighted Image at Optimization of Flip Angle (3T MR 스핀에코 T1강조영상에서 적정의 숙임각)

  • Bae, Sung-Jin;Lim, Chung-Hwang
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.177-182
    • /
    • 2009
  • Purpose : This study presents the optimization of flip angle (FA) to obtain higher contrast to noise ratio (CNR) and lower specific absorption rate (SAR). Materials and Method : T1-weighted images of the cerebrum of brain were obtained from 50$^\circ$ to 130$^\circ$ FA with 10$^\circ$ interval. Signal to noise ratios (SNRs) were calculated for white matter (WM), gray matter (GM), and background noise. The proper FA was analyzed by T-test statistics and Kruskal-wallis analysis using R1 = 1- exp ($\frac{-TR}{T1}$) and Ernst angle cos $\theta$ = exp ($\frac{-TR}{T1}$). Results : The SNR of WM at 130$^\circ$ FA is approximately 1.6 times higher than the SNR of WM at 50$^\circ$. The SNR of GM at 130$^\circ$ FA is approximately 1.9 times higher than the SNR of GM at 50$^\circ$. Although the SNRs of WM and GM showed similar trends with the change of FA values, the slowdown point of decrease after linear fitting were different. While the SNR of WM started decreasing at 120$^\circ$ FA, the SNR of GM started decreasing at less than 110$^\circ$. The highest SNRs of WM and GM were obtained at 130$^\circ$ FA. The highest CNRs, however, were obtained at 80$^\circ$ FA. Conclusion : Although SNR increased with the change of FA values from 50$^\circ$ to 130$^\circ$ at 3T SE T1WI, CNR was higher at 80$^\circ$ FA than at the usually used 90$^\circ$ FA. In addition, the SAR was decreased by using smaller FA. The CNR can be increased by using this optimized FA at 3T MR SE T1WI.

  • PDF