• Title/Summary/Keyword: Gravure printing

Search Result 126, Processing Time 0.034 seconds

The Effects of Doctoring Process in Gravure Off-set Printing on Patterning of Electrodes with Ag Ink (은 잉크를 이용한 그라비아 오프셋의 전극인쇄에서 닥터링 공정의 영향)

  • Choi, Ki Seong;Park, Jin Seok;Song, Chung-Kun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.462-467
    • /
    • 2013
  • In this paper, we analyzed the effects of doctoring process on the patterns of Ag ink in gravure off-set printing. The parameters of doctoring process were the angle and the pressure, which was represented by the depth of blade movement to the gravure roll, of doctor blade to the surface of gravure roll, and the angle of patterns engraved on the gravure roll to the doctor blade moving direction. The proper parameters were extracted for the fine patterns and they were 15 mm for the pressure, $60^{\circ}$ for the blade angle. And the angle of patterns with respect to the blade movement should be less than $40^{\circ}$ for the best results. The gravure off-set printing with the above parameters was carried out to print gate electrodes and scan bus lines of OTFT-backplane for e-paper. The line width of $50{\mu}m$ was successfully obtained. The thickness of electrodes was $2.5{\mu}m$ and the surface roughness was $0.65{\mu}m$ and the sheet resistance was $15.8{\Omega}/{\Box}$.

Computer Simulation of Ink Flow in the Conventional Gravure Cell (컨벤셔널 그라비어의 셀 내부에서 잉크유동 시뮬레이션)

  • Lim, Soo-Man;Youn, Jong-Tae;Kim, Kwang-Heui
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.109-120
    • /
    • 2007
  • In gravure printing, the amount of ink fill into the cells has a great effect on the qualities of final printed products. And printability of final products is determined by every kinds of variables. Ink transfer process is not verified scientifically because gravure cell is small and printing speed is rapid. In order to understand the ink transfer mechanism of conventional gravure, this study is performed using the Computational Fluid Dynamics Evaluation. Flow-3D simulation software is used for considering of Newtonian flow. Among the various factors, this study have dealt with gravure cell types used computer simulation in order to define distinctive features in ink flow in the cell. The results of simulation, it defined the distribution of pressure, speed, stream function, viscosity, shear rate, surface tension during the gravure printing. It is founded out the difficulties and characteristics according to the printing speed and viscosity of Gravure ink.

  • PDF

A Study on the Simulation of Ink Penetration into the Uncoated Papers in Gravure Printing (그라비어 인쇄에서 비도피지의 잉크 침투 시뮬레이션에 관한 연구)

  • Seo, Yea-Ri;Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • Gravure printing and manufacturing of advanced electronic components in a way that is going extra hold position. It is to print the electronic components of the rapid productivity improvements as well as cost-saving and environment-friendly industries such as the transition is a big advantage. However the mechanism of gravure is difficult to study scientifically because of high speed and excessively small size of the cell. To approach the mechanism we experimented using gravure printability. The condition of variables of IGT is pressure and velocity. By using Flow-3D simulation software, we built up the theoretical model under the constant variables. Then, we compared the real test with the simulation results. Therefore, it is studied the mechanism of gravure scientifically and it can be analysed the effect of the variable conditions.

Computer Simulation of Ink Flow In the Various Types of Gravure Cell (그라비어 셀의 형태에 따른 잉크 유동 시뮬레이션에 관한 연구)

  • Lee, Soon-Sim;Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.23 no.2
    • /
    • pp.59-75
    • /
    • 2005
  • In gravure printing, the amount of ink from cells has a great effect on the qualities of final printed products. And printability of final products is determined by every kinds variables. Ink transfer process is not verified scientifically because gravure cell is of small size and print speed is rapid. Therefore in order to study of ink transfer mechanism, this study is using the Computational Fluid Dynamics Evaluation. Polyflow 3-10 simulation software is used for considering of non-Newtonian flow. Among the various factors, this study have dealt with gravure cell types used computer simulation in order to define distinctive features in ink flow and transfer. The results of simulation, it defined the distribution of pressure, speed, stream function, viscosity, shear rate during the gravure printing. It is fined out the difficulties and characteristics according to the shape of cell types. Through this study, the condition of gravure printing is depending on the print condition and characteristic of cells.

  • PDF

Bi-layer Gravure Printed Organic Light Emitting Layers with MEH-PPV and Rubrene

  • Kim, A-Ran;Lee, Hye-Mi;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1508-1510
    • /
    • 2009
  • In this work, we have compared OLED devices made of blended MEH-PPV/Ruburene mixture and MEH-PPV/Rubrene bi-layer structure devices. The emission layers were made with two different ways - one with gravure printed single layer of blended mixture of MEH-PPV and rubrene, the other with gravure printed bilayers of MEH-PPV and rubrene. Both brightness and efficiency with gravure printed bi-layer devices were higher than blended devices. In this work, we demonstrated that organic bi-layers can be formed with gravure printing technology and higher efficiency can be achieved with bi-layer structure than with blended single layer structure.

  • PDF

Effect of Thermal Annealing on Nanoscale Thickness and Roughness Control of Gravure Printed Organic Light Emitting for OLED with PVK and $Ir(ppy)_3$

  • Lee, Hye-Mi;Kim, A-Ran;Kim, Dae-Kyoung;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1511-1514
    • /
    • 2009
  • Organic light emitting layer in OLED device was formed by gravure printing process in this work. Organic surface coated by gravure printing typically showed relatively bad uniformity. Thickness and roughness control was characterized by applying various mixed solvents in this work. Poly (N-vinyl carbazole) (PVK) and fact-tris(2-phenylpyridine)iridium($Ir(ppy)_3$) are host dopant system materials. PVK was used as a host and Ir(ppy)3 as green-emitting dopant. To luminance efficiency of the plasma treatment on etched ITO glass and then PEDOT:PSS spin coated. The device layer structure of OLED devices is as follow Glass/ITO/PEDOT:PSS/PVK+Ir(ppy)3-Active layer /LiF/Al. It was printed by gravure printing technology for polymer light emitting diode (PLED). To control the thickness multi-printing technique was applied. As the number of the printing was increased the thickness enhancement was increased. To control the roughness of organic layer film, thermal annealing process was applied. The annealing temperature was varied from room temperature, $40^{\circ}C$, $80^{\circ}C$, to $120^{\circ}C$.

  • PDF

Fabrication Method of Metal Grid Mesh Film Using the Gravure Offset Printing (그리비어 옵셋을 이용한 메탈 그리드 메쉬 필름 제작 기법)

  • Kim, Jung Su;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.969-974
    • /
    • 2014
  • Previously fabricated electronic devices were used for vacuum manufacturing processes such as conventional semiconductor manufacturing. However, they are difficult to apply to continuous processes such as roll-to-roll printing, which results in very high device manufacturing and processing costs. Therefore, many developers have been interested in applying continuous processes to contact printing or noncontact printing technologies and they proposed various continuous printing techniques instead of conventional batch coating. In this paper, we proposed improved gravure offset printing process as one of the contact printing technique. We used etching pattern geometry with soft core blanket roll for printing of ultra fine line below the 10um.Using this technique we obtained flexible metal grid mesh film as transparent conductive film.

Gravure Offset Printing for Printed Electronics (인쇄전자를 위한 그라비아 옵셋 인쇄)

  • Kim, Chung-Hwan;Choi, Byung-Oh;Ryu, Byung-Soon;Kim, Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.96-102
    • /
    • 2008
  • Manufacturing of printed electronics using printing technology has begun to get into the hot issue in many ways due to the low cost effectiveness to existing semi-conductor process. This technology, with low cost and high productivity, can make it possible to produce printed electronics such as TFT, solar cell, RFID Tag, printed battery, and so on. In this study, apparatus of gravure-offset printing are developed for fine line-width/gap printing and the results obtained from the apparatus shows that it is possible to make around 20 micro-meter line-width/gap printing patterns. The roll-to-roll printing system for fine line-width printing based on primary experiment is presented. The printing results obtained from the system shows around 30 micro-meter line-width/gap printing patterns.

Influence of Micro Pattern Geometry and Printing and Curing Conditions in Gravure Printing on Printing Performance When Using Conductive Ink (패턴 형상, 인쇄 및 건조 조건이 전도성 잉크를 이용한 그라비아 인쇄 결과물의 성능에 미치는 영향)

  • Ahn, Byoung-Joon;Han, Kyung-Joon;Ko, Sung-Lim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.263-271
    • /
    • 2010
  • e-Printing is a new manufacturing technology for electronic products and is based on traditional printing technology. The electronic products require a large area to facilitate printing and to be economical. A gravure printing system that supports a roll to roll (R2R) manufacturing process can be used to reduce the cost and to achieve the required accuracy. Many factors such as drying method, drying temperature, tension,-printing velocity, ink viscosity, ink conductivity, pattern accuracy, and dot geometry influence the performance of printed electronics. These factors are closely interrelated. The optimum condition for printing must be determined to enhance the performance of the printed electronics. In this study, lines and areas are printed using a gravure printer with conductive ink under different conditions of the above mentioned factors. The results are analyzed to investigate the influence of various factors on the performance of the printed electronics.