• Title/Summary/Keyword: Gravure

Search Result 155, Processing Time 0.027 seconds

Exposures of Organic Solvent Mixtures to Rotogravure Printing Workers (일부 그라비아 인쇄업 근로자의 혼합 유기용제 노출농도)

  • Choi, Ho-Chun;Kim, Kangyoon;An, Sun-Hee;Chung, Kyou-Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.1
    • /
    • pp.71-85
    • /
    • 1997
  • The purpose of this study was to evaluate concentrations of organic solvent mixtures in air of rotogravure printing workplaces. Qualitative and quantitative analysis of organic solvents contained in the gravure inks used at rotogravure factories had been done. The results obtained were as follows: 1. The gravure inks mainly consist of toluene, methyl ethyl ketone(MEK), and ethyl acetate(EA), and traces of isopropyl alcohol(IPA), xylene, 2-butanol, cyclohexane, cellosolve etc were also contained in them. 2. Thinner used as a diluent consist of toluene, MEK, and EA. 3. Geometric mean concentration of toluene in ambient air were 23.81 ppm at gravure printing of packing material, 42.10 ppm at gravure printing of wallpaper, 16.95 ppm at gravure printing of plastic bottle for beverage and 4.31 ppm at gravure printing of plywood printing or floor covering. Concentrations of toluene in ambient air showed statistically significant difference between types of printing. 4. Concentrations of MEK in ambient air were 12.43 ppm at gravure printing of packing material, 5.47 ppm at gravure printing of wallpaper, 16.78 ppm at gravure printing of plastic bottle for beverage and 16.44 ppm at gravure printing of plywood printing or floor covering. MEK concentrations in ambient air showed no significant difference. 5. Conentrations of EA were 14.30 ppm at gravure printing of packing material, 1.92 ppm at gravure printing of wallpaper and 21.12 ppm at gravure printing of plywood printing or floor covering. EA concentrations in ambient air shown significant difference. 6. Percentage of the workplaces where the ambient air concentration of organic solvent mixtures exceeded the Korean Permissble Exposure Level(KPEL) amounted to 18.03%. 7. Toluene concentrations in ambient air of rotogravure printing workplaces ranged from 0.69 to 156.02 ppm and urinary hippuric acid excretion ranged from 0.10 to $1.32g/{\ell}$.

  • PDF

Technology of thin Film Formation by Using the Micro Gravure Coater (마이크로 그라비어 코터를 이용한 박막 형성 기술)

  • Kim, Dong Soo;Kim, Jung Su;Bae, Sung Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.596-600
    • /
    • 2013
  • We report here on the processing and manufacturing of thin film for printed electronics by micro-gravure coating system. The micro-gravure coating systems are consisted of various modules such as web and system tension controller, micro-gravure coating units, dispenser and hybrid dry units (UV, NIR, Hot air). Especially, for the optimization of system, the number of idle roller was minimized and tension isolating infeeder was included. Also, we applied four patterns circle, 45 degree, square and 35 degree for the optimizing coating thickness. The micro-gravure coating system which applied various patterns to enable continuous coating process and fast coating time compare with conventional batch coating system. In this paper, introduce of micro-gravure coating system and testing results of coating thickness (20~700nm), coating time (1~2sec) and surface roughness (3~12nm) by using micro-gravure coating system.

A Study on the Simulation of Ink Penetration into the Uncoated Papers in Gravure Printing (그라비어 인쇄에서 비도피지의 잉크 침투 시뮬레이션에 관한 연구)

  • Seo, Yea-Ri;Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • Gravure printing and manufacturing of advanced electronic components in a way that is going extra hold position. It is to print the electronic components of the rapid productivity improvements as well as cost-saving and environment-friendly industries such as the transition is a big advantage. However the mechanism of gravure is difficult to study scientifically because of high speed and excessively small size of the cell. To approach the mechanism we experimented using gravure printability. The condition of variables of IGT is pressure and velocity. By using Flow-3D simulation software, we built up the theoretical model under the constant variables. Then, we compared the real test with the simulation results. Therefore, it is studied the mechanism of gravure scientifically and it can be analysed the effect of the variable conditions.

Design and Development of Gravure Offset Printing System (그라비아 옵셋 인쇄 장비 설계 및 제작)

  • Noh, Jae-Ho;Lee, Taik-Min;Park, Sang-Ho;Jo, Jeong-Dai;Kim, Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.16-19
    • /
    • 2010
  • This paper presents how to design and fabricate the gravure offset printing system for enhancement of register precision. Factors of precision error are caused by imprecision of gravure plate, deformation of substrate, printing quality change due to the change of ink viscosity, Imprecision of printing machine, and so on. This study suggests concept design of gravure offset printing system which is able to minimize or remove these error factors.

Computer Simulation of Ink Flow In the Various Types of Gravure Cell (그라비어 셀의 형태에 따른 잉크 유동 시뮬레이션에 관한 연구)

  • Lee, Soon-Sim;Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.23 no.2
    • /
    • pp.59-75
    • /
    • 2005
  • In gravure printing, the amount of ink from cells has a great effect on the qualities of final printed products. And printability of final products is determined by every kinds variables. Ink transfer process is not verified scientifically because gravure cell is of small size and print speed is rapid. Therefore in order to study of ink transfer mechanism, this study is using the Computational Fluid Dynamics Evaluation. Polyflow 3-10 simulation software is used for considering of non-Newtonian flow. Among the various factors, this study have dealt with gravure cell types used computer simulation in order to define distinctive features in ink flow and transfer. The results of simulation, it defined the distribution of pressure, speed, stream function, viscosity, shear rate during the gravure printing. It is fined out the difficulties and characteristics according to the shape of cell types. Through this study, the condition of gravure printing is depending on the print condition and characteristic of cells.

  • PDF

Bi-layer Gravure Printed Organic Light Emitting Layers with MEH-PPV and Rubrene

  • Kim, A-Ran;Lee, Hye-Mi;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1508-1510
    • /
    • 2009
  • In this work, we have compared OLED devices made of blended MEH-PPV/Ruburene mixture and MEH-PPV/Rubrene bi-layer structure devices. The emission layers were made with two different ways - one with gravure printed single layer of blended mixture of MEH-PPV and rubrene, the other with gravure printed bilayers of MEH-PPV and rubrene. Both brightness and efficiency with gravure printed bi-layer devices were higher than blended devices. In this work, we demonstrated that organic bi-layers can be formed with gravure printing technology and higher efficiency can be achieved with bi-layer structure than with blended single layer structure.

  • PDF

Effect of Thermal Annealing of Gravure Printed Polymer Solar Cells

  • Lee, Ji-Yeon;Kim, Jung-Woo;Kim, Hyung-Sub;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1571-1572
    • /
    • 2009
  • Polymer solar cells were fabricated with gravure printing process and the effect of thermal annealing of gravure printed organic layer was investigated. The layer structure of polymer solar cells is glass / ITO / hole transfer layer / active layer / Al structure was fabricated. For the active layer, 1:1 ratio of poly-3-hexylthiophene (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) mixture was applied. The P3HT/PCBM blend was gravure printed onto the substrates. The effect of thermal annealing was investigated by changing annealing time and the number of printing. Maximum 3.6% of power conversion efficiency was achieved with gravure printing of organic layer and thermal annealing in this work.

  • PDF

A Study on Processing of Auxiliary Electrodes for OLED Lighting Devices Using a Reverse Gravure-Offset or Gravure-Offset Printing (리버스 그라비아 옵셋 또는 그라비아 옵셋 프린팅을 이용한 조명용 OLED 소자 보조전극 형성 공정 연구)

  • Bae, Sung Woo;Kwak, Sun Woo;Kim, In Young;Noh, Yong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.578-583
    • /
    • 2013
  • The lighting devices using organic light emitting diodes (OLEDs) are actively researched because of the various advantages such as high power efficiency and 2-dimensitonal lighting emitting. To commercialize those OLED lighting devices, the manufacturing cost must be downed to comparable price with conventional light sources. Here, we demonstrate a reverse gravure-offset or gravure off-set printed metal electrode for the auxiliary electrode for OLED lighting devices. For the fabricated OLED's auxiliary electrode, we used Ag nano-paste and printed metal grid structure with a line width and spacing of several ten and hundred micrometer by using gravure-offset printing. In the end the printing metal grid pattern are successfully achieved by optimization of various experimental conditions such as printing pressure, printing speed and printing delay time.

The Effects of Doctoring Process in Gravure Off-set Printing on Patterning of Electrodes with Ag Ink (은 잉크를 이용한 그라비아 오프셋의 전극인쇄에서 닥터링 공정의 영향)

  • Choi, Ki Seong;Park, Jin Seok;Song, Chung-Kun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.462-467
    • /
    • 2013
  • In this paper, we analyzed the effects of doctoring process on the patterns of Ag ink in gravure off-set printing. The parameters of doctoring process were the angle and the pressure, which was represented by the depth of blade movement to the gravure roll, of doctor blade to the surface of gravure roll, and the angle of patterns engraved on the gravure roll to the doctor blade moving direction. The proper parameters were extracted for the fine patterns and they were 15 mm for the pressure, $60^{\circ}$ for the blade angle. And the angle of patterns with respect to the blade movement should be less than $40^{\circ}$ for the best results. The gravure off-set printing with the above parameters was carried out to print gate electrodes and scan bus lines of OTFT-backplane for e-paper. The line width of $50{\mu}m$ was successfully obtained. The thickness of electrodes was $2.5{\mu}m$ and the surface roughness was $0.65{\mu}m$ and the sheet resistance was $15.8{\Omega}/{\Box}$.

Computer Simulation of Ink Flow in the Conventional Gravure Cell (컨벤셔널 그라비어의 셀 내부에서 잉크유동 시뮬레이션)

  • Lim, Soo-Man;Youn, Jong-Tae;Kim, Kwang-Heui
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.109-120
    • /
    • 2007
  • In gravure printing, the amount of ink fill into the cells has a great effect on the qualities of final printed products. And printability of final products is determined by every kinds of variables. Ink transfer process is not verified scientifically because gravure cell is small and printing speed is rapid. In order to understand the ink transfer mechanism of conventional gravure, this study is performed using the Computational Fluid Dynamics Evaluation. Flow-3D simulation software is used for considering of Newtonian flow. Among the various factors, this study have dealt with gravure cell types used computer simulation in order to define distinctive features in ink flow in the cell. The results of simulation, it defined the distribution of pressure, speed, stream function, viscosity, shear rate, surface tension during the gravure printing. It is founded out the difficulties and characteristics according to the printing speed and viscosity of Gravure ink.

  • PDF