• Title/Summary/Keyword: Gravity correction

Search Result 66, Processing Time 0.021 seconds

The analysis of the tide and drift correction models for precise gravity surveying (정밀 중력측정을 위한 조석 및 계기 보정 모델 분석)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.523-530
    • /
    • 2010
  • Recently more gravity data is being obtained due to the increased demands from the fields of geodesy, geophysics, and military. In general, the observed gravity values are corrected for the effect of tide, instrument drift, and instrument height to generate the absolute gravity values at a point. Until yet, the models for tide and drift corrections and those procedures are not determined in Korea which led to the inconsistent data processing for different data sets. Therefore, in this study, the models for tide and drift are analyzed to select the appropriate models. Based on the analysis, it was found that there is not much difference between Longman and Tamura tide models for celestial objects. Earth tide, however, should be considered in tide correction procedure. In drift corrections, the difference between the model considering only the common points and that considering all points appears significantly large up to 0.04mGal. In this case, the model with all points should be used as it the correct one according to the adjustment theory and it generates estimates with better precision.

Installation and Data Analysis of Superconducting Gravimeter in MunGyung, Korea; Preliminary Results (문경 초전도 중력계 설치 및 기초자료 분석)

  • Kim, Tae-Hee;Neumeyer, Juergen;Woo, Ik;Park, Hyuck-Jin;Kim, Jeong-Woo
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.445-459
    • /
    • 2007
  • Superconducting Gravimeter(SG) was installed and has been successfully operated at MunGyung, Kyungsang province in Korea in March 2005. It was registered as the 21st observatory of the Global Geodynamics Project. Since SG can precisely measure the gravity variations below the 1mHz frequency band, it has the outstanding capability to sense and resolve many different periodic gravity components from each other. From the raw data collected between 18 March 2005 and 21 February 2006 diurnal and semi-diurnal tidal band's residual gravity components were analyzed. During this process, the instrumental noises, air pressure, and ground water corrections were carried out. Values of $-3.18nm/s^2/hPa\;and\;17nm/s^2/m$ were used respectively in the air pressure and groundwater corrections. Hartmann-Wenzel and Whar-Dehant Earth tide models were adopted to compute the residual gravity for Q1, O1, P1, K1, M2, N2, S2, K2 tidal bands. For the ocean loading correction, SCW80, FES952, and FES02 models were used and compared. As a result, FES02 ocean loading model has shown the best match for the data processing at MunGyung SG MunGyung SG gravity was compared with GRACE satellite gravity. The correlation coefficient between the two gravity after groundwater correction was 0.628, which is higher than before ground water correction. To evaluate sensitivity at MunGyung SG gravity statition, the gravity data measured during 2005 Indodesian earthquake was compared with STS-2 broad band seismometer data. The result clearly revealed that the SG could recorded the same period of earthquake with seismometer event and a few after-shock events those were detected by seismometer.

Effect of Self-gravity Acupressure on Varus Knee Correction: Retrospective Observational Study (자가 중력 지압에 의한 내반슬 교정 효과: 후향적 관찰 연구)

  • Sung Kwon Park;Seong Chan Kim;Geum Na Hong;Min Joo Choi
    • Journal of Naturopathy
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • Background: Despite the positive effects of the self-gravity acupressure program on genu varum correction, no systematic observation has yet to be made. Purpose: In this study, the effect of the self-gravity acupressure program on varus knee correction was confirmed retrospectively by comparing the medial angle of the knee before and after the self-gravity acupressure program. Methods: Fifty people with varus knees were subjected to a 75-minute acupressure program while lying on an acupressure tool, and then the medial knee angles were compared before and after the program. Results: The average angle of the inside of the knee of the study subjects increased by 7.29±3.85° (p<.000) on the left side and 7.08±3.86° (p<.000) on the right side after the acupressure program was implemented, indicating that the study subject's varus knee significantly improved even after applying for a short period time. It was confirmed. Conclusion: This study confirmed that the self-gravity acupressure is a valuable program for correcting the genus varus. However, to use the results of this study clinically in the future, further studies are required to optimize the mechanism and clinical effects of the self-gravity acupressure program on the improvement of the genu varus knee.

Treatment for ophthalmic paralysis: functional and aesthetic optimization

  • Kim, Min Ji;Oh, Tae Suk
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.1
    • /
    • pp.3-9
    • /
    • 2019
  • Facial nerve palsy has an effect on a person's well-being functionally and psychologically. Therefore, comprehensive patient management is essential. One of the most common uncomfortable and potentially debilitating features is associated with the incapacity for eye closure. Restoration of eye closure is a key consideration during the surgical management of facial palsy. In this article, we introduce simple surgical methods-which are relatively easy to learn and involve the upper and lower eyelids-for achieving eye closure. Correcting upper eyelid function involves facilitating the component of eye closure that is in the same direction as gravity and is, therefore, less complicated and favorable outcomes than correction of lower lid. Aesthetic aspects should be considered to correct the asymmetry caused by facial palsy. Lower eyelid function involves a force that opposes gravity for eye closure, which makes correction of lower eyelid ectropion more challenging than surgery for the upper eyelid, particularly in terms of effecting a sustained correction. Initially, proper ophthalmic evaluation is required, including identifying the chronicity and severity of ectropion. Also, it is important to determine whether or not lateral canthoplasty is necessary. The lateral tarsal strip procedure is commonly used for lower lid correction. However, effective lower lid correction can be achieved with better cosmesis when extensive supporting techniques are applied, including those involving cheek tissue.

Inclination and Non-horizontal Error Correction of Magnetic Compass by the Law of Gravity (중력 법칙을 이용한 전자나침반의 경사오차 및 비 수평오차 보정)

  • Park, Gye-Do;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.606-611
    • /
    • 2011
  • This paper proposes a correction method concerning the inclination error and non-horizontal error of magnetic compass when magnetic compass is vibrated. This system used the 2-axis variable resistance and pendulum. A pendulum hanging from the 2-axis variable resistance of this system is always maintain the horizontal because of gravity. but these data had some intrinsic error. So we used the low pass filter to solve this problem. So this system can get the accurate azimuth of magnetic compass. In conclusion, These results demonstrate convincingly by applied algorithm of experiment.

Precise Height Determination in Mountainous Areas of South Korea (우리나라 산악지에서의 정밀표고 결정)

  • Lee, Suk-Bae;Auh, Su-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.99-108
    • /
    • 2018
  • The purpose of this study is to determine the precise height in mountainous areas of South Korea and Jiri mountain area was selected as a test bed for the study. Gravity observation and GNSS surveying were performed for 44 BM(Benchmark) points in the test bed and calculate the height and the height correction. In the calculation, the dynamic correction amount, the orthometric correction amount and the normal correction amount were calculated, and the dynamic height and orthometric height and the normal height were calculated considering each correction amount. The results showed that the difference between normal gravity and observed gravity and also the difference between orthometric correction and the normal correction. In addition, the results of the comparison of the present official BM height and the computed orthometric height in this study show that Korean height system should be shifted from the normal orthometric height system to the orthometric height system. Because the difference between the orthometric correction and the normal correction within the test bed indicated a distribution of at a minimum of -234.41 mm up to 196.925 mm, and the difference between the present official BM height and the calculated orthometric height were distributed from -0.121m to 0.011 m.

A Study on the Orthometric Height Correction in Mt. Hangye Area (강원도 한계령 지역의 정규고 보정에 대한 연구)

  • Choi, Kwang-Sun;Lee, Jeong-Mo
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.522-528
    • /
    • 1997
  • Gravity surveys with accompanying spirit levelings were carried out in Mt. Hangye area. From these survey results, orthometric height correctioins were calculated. The correction reaches 5 cm when the height difference is 900 m in this area. The corrections were also calculated using an available Bouguer anomaly map, and they are little different from the previous results. In conclusion, orthometric height corrections are necessary in precise spirit leveling, specially in higher lands, and they can be easily calculated from an available Bouguer anomaly map without laborious gravity surveys.

  • PDF

A Gravity Characteristic of Svalbard Archipelago in Arctic by Using ArcGP Data (ArcGP 자료를 이용한 북극 스발바드 군도의 중력특성)

  • Yu Sang Hoon;Kim Chang Hwan;Hwang Jong Sun;Min Kyung Duck
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.255-260
    • /
    • 2005
  • A Gravity characteristic of Svalbard archipelago in Arctic was studied by using ArcGP data. There are situated the Dasan science station. After bouguer correction, an edge effect of free-air anomaly, which is similar to topography, are not shown at passive continent margin, and after terrain correction with GTOPO30 data, gravity anomaly increases from continent to marine. that is deep connected with rise of Moho discontinuity. The correlation of topography and free-air anomaly shows that the isostasy of continent attains a little less than marine. After filtering, the residual anomaly are shown high and low anomalies related to fracture zone in continent and base depression or thick sedimentary layer in continental slope, marine.

  • PDF

Gravimetric Terrain Correction using Triangular Element Method (삼각요소법을 이용한 중력자료의 지형보정)

  • Rim, Hyoung-Rea;Lee, Heui-Soon;Park, Young-Sue;Lim, Mu-Taek;Jung, Hyun-Key
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.169-174
    • /
    • 2010
  • We developed a precise terrain correction program using triangular element method (TEM) for microgravity data processing. TEM calculates gravity attraction of arbitrary polyhedra whose surface is patched by triangles. We showed that TEM can calculate more precise terrain effect than conventional rectangular prism method. We tested the accuracy of TEM on the cone model which has analytic solution. Also, we tested the accuracy of TEM on the slope model, this results showed that there are big differences calculated by TEM and rectangular prsim method (RPM) on slope model. The developed terrain correction program was applied on the gravity data on the southern area near sea shore of Korean peninsula, calculated terrain effect very precisely.

우리나라 육상 중역기점 전이

  • Choe, Gwang-Seon;Ok, Su-Seok;Won, Ji-Hun
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.2
    • /
    • pp.121-131
    • /
    • 2001
  • We have established 88 auxiliary gravity reference stations by using two gravitimeters at the observation offices of the Korean meteorological agency and measured the locations by using GPS. All gravity values have been calculated on the basis of the gravity reference point at Pusan National University, thus, they have been established to bge easily converted to new absolute gravity value later. The increased numbers of the gravity reference stations will minimize errors due to measurements, drift correction etc. and increase the accuracy of the gravity data. The result of this research will be used to verify the gravity data which calculated with the relative gravity meter and to inspect relative gravity meters.

  • PDF