• Title/Summary/Keyword: Gravity compensator

Search Result 20, Processing Time 0.062 seconds

A Study on a Gravity Compensator for the Robot Arm (로봇팔을 위한 중력보상기 연구)

  • Choi, Hyeung-Sik;Kim, Dong-Ho;Her, Jea-Gwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.226-232
    • /
    • 2009
  • In this paper, a design and analysis of a gravity compensator which is a new device to reduce the joint torque of robots caused due to gravity is presented. Joints of all robots are loaded by large torques due to gravity. By applying the gravity compensator to the robot joints, the load torques applied to the robot joints are reduced by the repulsive force of the gravity compensator such that the size of the joint actuation motor can be reduced. In this paper, the structure and force relation of the gravity compensator are analyzed. The superior performance of the proposed gravity compensator is verified through experiments which measure the joint motor current caused by the load applied to the robot link.

A study on the Biped Walking Robot applying a Gravity Compensator (중력보상기를 적용한 이족보행로봇 연구)

  • Choi, Hyeung-Sik;Na, Won-Hyun;Kim, Dong-Ho;Chu, U-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.55-62
    • /
    • 2010
  • In this paper, the structure of a new gravity compensator was studied, and the biped walking robot applying a gravity compensator was presented to improve the performance of the robot. The robot had 13 degree of freedom and is driven by the joint actuator with the gravity compensator. Each leg of the robot is composed of six joints three joints at the hip, a joint at the knee, and two joints at the ankle. The leg of the robot was designed to support 74kg weight including 30kg payload thanks to the gravity compensator. The performance of the robot was presented by reducing the payload applied to the leg joint of the robot thanks to the gravity compensator.

Study of a Gravity Compensator for the Lower Body (중력보상기 기반의 하지용 외골격 장치 설계 연구)

  • Choi, Hyeung-Sik;Kim, Dong-Ho;Jeon, Ji-Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.455-462
    • /
    • 2011
  • This paper is about the design of a new gravity compensator for the lower body exo-skeleton device. The exo-skeleton devices is for increasing the torque of the human body joint for the purpose of helping the disabled, workers in the industry, and military soldiers. So far, most of studied exo-skeleton devices are actuated by the motors, but motors are limited in energy such that a short durability is always a big problem. In this paper, a new gravity compensator is proposed to reduce the torque load applied to human body joints due to gravity. The gravity compensator is designed using a tortional bar spring, and its structure and characteristics are studied through the test and computer simulation. A design concept on the exo-skeleton device using the gravity compensator is presented. An analysis and computer simulation on the torque reduction of the proposed exo-skeleton device that applies and non-applies the gravity compensator are performed.

Study on Robot Manipulator applying the Gravity Compensator (중력 보상기를 적용한 로봇 매니퓰레이터 연구)

  • Choi, Hyeung-Sik;Hur, Jae-Gwan;Seo, Hae-Yong;Hong, Sung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.267-274
    • /
    • 2010
  • In this paper, the structure of a gravity compensator was studied, and the 6-axis robot manipulator which is newly developed by applying the gravity compensator is presented to improve the torque performance of the robot joint. The kinematics analysis on the robot was presented. Also, a simulation of the performance of the joint actuator of robot adopting the gravity compensator was presented by applying various springs. According to the simulation results, it was validated that the payload effect on the robot joint actuator adopting the gravity compensator is reduced in proportion to the spring intensity of the gravity compensator.

Experimental Study of a lower body exoskeleton applying a torsion bar gravity compensator (토션바 중력보상기를 적용한 하지용 외골격 장치 실험연구)

  • Choi, Hyeung-Sik;Lee, Dong-June;Yoon, Jong-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.97-98
    • /
    • 2011
  • This paper is about the study of a new exo-skeleton device applying a gravity compensator. The exo-skeleton devices is to reduce the external torque applied to the human body joint for the purpose of helping the disabled, reducing heavy payload for industry workers or military soldiers. Most of the exoskeleton devices are actuated by the motors, but motors are limited in energy such that a short durability is always a big problem. In this paper, an exoskeleton device using a new gravity compensator based on a torsion bar is proposed to reduce the torque load applied to human body joints. The exoskeleton device is designed for the lower body of human. Analyses on the torsion bar spring and link of the exoskeleton device using FEM method were performed. To reduce the applied torque to the human joint, a torsion bar gravity compensator is applied to the exoskeleton. The effect of the torsion bar compensator for the exoskeleton device was verified through load test using developed test equipment.

  • PDF

Gravity Compensator for the Roll-pitch Rotation (Roll-pitch 중력 보상 기구 설계)

  • Cho, Chang-Hyun;Lee, Woo-Sub;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.688-694
    • /
    • 2010
  • This paper presents a gravity compensator for the manipulator of a service robot. The manipulator of a service robot is operated with low velocity for the safety reason in most cases. In this situation gravitational torques generated by the mass of links are often much greater than dynamic torques for motion. A gravity compensator can counterbalance the gravitational torques, thereby enabling to utilize relatively low power motors. In this paper the gravity compensation for the roll-pitch rotation is considered which is often used for the shoulder joints of the manipulator of a service robot or humanoid robot. A gimbals is implemented and two 1-dof gravity compensators are equipped at the base. One compensates the gravitational torque at the roll joint and another provides the compensational torque for the gimbals. Various analyses showed that the proposed compensator can counterbalance the gravitational torques of 87% at the pitch joint and 50% at the roll joint. It is verified from dynamic simulations that the proposed compensator effectively counterbalances the gravitational torques.

Experimental Study of the Robot Arm Applying the Gravity Compensator (중력보상기를 적용한 로봇 팔의 실험적 연구)

  • Choi, Hyeung-Sik;Seo, Hae-Yong;Uhm, Tai-Woong;Yoon, Jong-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.60-67
    • /
    • 2011
  • In this paper, the structure of a gravity compensator(GC) was studied, and the 6-axis robot manipulator which is newly developed by applying the GC is presented to improve the torque performance and repeatability error of the robot joint. The kinematics analysis on the robot was presented. Also, experiments of the performance of the joint actuator of robot adopting the gravity compensator were presented by the GC to $1^{st}$ and $2^{nd}$ joints of the robot arm. According to the experiment results, it was validated that the position errors and load torque of the robot joint actuator adopting the GC are reduced significantly.

Structure Analysis of an Exoskeleton with a Torsion Bar Gravity Compensator (비틈 봉 중력보상기를 적용한 외력증강기 구조해석)

  • Choi, Hyeong-Sik;Lee, Dong-Jun;Jo, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.467-475
    • /
    • 2012
  • In this paper, a technical method of reducing torque load of exoskeleton device, with using of a gravity compensator based on a torsion bar, for human leg joints, is proposed. Design and structure analyses and also performance test were performed to estimate and to measure the characteristics of the torsion bar. On the basis of design and structure analysis, a new light and compact exoskeleton device has been developed. For the purpose of lightening and optimizing thickness of the links, FEM analysis has been performed.

Design of phase tracking feedback compensator for stabilization of single mode fiber-optic Mach-Zehnder interferometer (단일모드 광섬유 Mach-Zehnder간섭계의 안정화를 위한 추적궤환 보상기의 설계)

  • 이기완;오문수;홍봉식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.547-552
    • /
    • 1989
  • Single mode optical fiber interferometeric sensors using phase tracking homodyne detection are typically susceptible to environmentally induced temperature fluctuations and other types of disturbances. In this paper compensator is described, which is a simple and effective phase tracking feedback electronic circuit must be output signal stabilized to achieve maximln sensitivity and linearity of Mach-Zehnder fiber-optic interferomter in the presence of differential phase drift. The phase tracking range of the piezoelectric cylinder in the reference arm is .+-.3.7.pi.rad, and the probe mass about 1 gram in the sensing ann was used for measurements of the gravity acceleration.

  • PDF