• 제목/요약/키워드: Gravity Loads

검색결과 219건 처리시간 0.027초

In-plane structural analysis of blind-bolted composite frames with semi-rigid joints

  • Waqas, Rumman;Uy, Brian;Wang, Jia;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.373-385
    • /
    • 2019
  • This paper presents a useful in-plane structural analysis of low-rise blind-bolted composite frames with semi-rigid joints. Analytical models were used to predict the moment-rotation relationship of the composite beam-to-column flush endplate joints that produced accurate and reliable results. The comparisons of the analytical model with test results in terms of the moment-rotation response verified the robustness and reliability of the model. Abaqus software was adopted to conduct frame analysis considering the material and geometrical non-linearities. The flexural behaviour of the composite frames was studied by applying the lateral loads incorporating wind and earthquake actions according to the Australian standards. A wide variety of frames with a varied number of bays and storeys was analysed to determine the bending moment envelopes under different load combinations. The design models were finalized that met the strength and serviceability limit state criteria. The results from the frame analysis suggest that among lateral loads, wind loads are more critical in Australia as compared to the earthquake loads. However, gravity loads alone govern the design as maximum sagging and hogging moments in the frames are produced as a result of the load combination with dead and live loads alone. This study provides a preliminary analysis and general understanding of the behaviour of low rise, semi-continuous frames subjected to lateral load characteristics of wind and earthquake conditions in Australia that can be applied in engineering practice.

한반도 남부 지각평형과 암석권의 유효탄성두께 (On the isostasy and effective elastic thicness of the lithosphere in southern prt of the Korean Peninsula)

  • 최광선;김정희;신영홍
    • 지구물리
    • /
    • 제5권4호
    • /
    • pp.293-303
    • /
    • 2002
  • 본 연구에서는 2002년까지 수집된 우리나라 일원의 각종 중력자료와 지형자료를 이용하여 한반도 남부지역(위도 $36.5^{\circ}N$, 경도 $127.5^{\circ}E$를 중심으로 하는 $332km{\times}332km$의 지역)에서 탄성판모델을 설정했을 때의 지각평형과 암석권의 탄성강도 및 유효탄성두께에 대하여 고찰해 보았다. 연구범위의 설정에 있어 이질적인 판구조환경을 가지고 있을 것으로 생각되는 동해의 영향을 배제하도록 하였다. 연구지역에서 파워스펙트럼분석에 의한 모호면의 평균깊이가 30km로 계산되었다. 지각을 단일층으로 가정하고 탄성판모델을 적용한 결과, 관측 코히어런스에서 짐이 300km이상의 파장을 가지면 거의 평형을 이루고 있고, 80km에서 300km 사이는 부분적으로 암석권의 강도에 의해 보상되고 있으며, 80km 이하의 파장의 경우는 거의 암석권의 강도에 의해 지지되고 있음이 나타난다. 지각모델과 강도를 가정하고 계산한 예측 코히어런스와 비교한 결과, 암석권의 탄성강도(flexural rigidity)는 $3.0{\times}10^{22}Nm$(유효탄성두께는 15km)로 나타났다. 이는 우리나라의 지각강도가 상당히 약하다는 것을 지시하며, 안정되고 오래된 지역에서 얻어진 결과보다는 해양이나 판의 경계부에서의 결과와 비슷하다. 우리나라의 경우 대규모의 지각변동과 그에 수반된 마그마의 관입이나 화산활동, 그리고 습곡과 단층 등의 영향은 암석권의 강도를 작게 만드는 원인으로 작용했을 것이다.

  • PDF

Nonlinear modeling of roof-to-wall connections in a gable-roof structure under uplift wind loads

  • Enajar, Adnan F.;Jacklin, Ryan B.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • 제28권3호
    • /
    • pp.181-190
    • /
    • 2019
  • Light-frame wood structures have the ability to carry gravity loads. However, their performance during severe wind storms has indicated weakness with respect to resisting uplift wind loads exerted on the roofs of residential houses. A common failure mode observed during almost all main hurricane events initiates at the roof-to-wall connections (RTWCs). The toe-nail connections typically used at these locations are weak with regard to resisting uplift loading. This issue has been investigated at the Insurance Research Lab for Better Homes, where full-scale testing was conducted of a house under appropriate simulated uplift wind loads. This paper describes the detailed and sophisticated numerical simulation performed for this full-scale test, following which the numerical predictions were compared with the experimental results. In the numerical model, the nonlinear behavior is concentrated at the RTWCs, which is simulated with the use of a multi-linear plastic element. The analysis was conducted on four sets of uplift loads applied during the physical testing: 30 m/sincreased by 5 m/sincrements to 45 m/s. At this level of uplift loading, the connections exhibited inelastic behavior. A comparison with the experimental results revealed the ability of the sophisticated numerical model to predict the nonlinear response of the roof under wind uplift loads that vary both in time and space. A further component of the study was an evaluation of the load sharing among the trusses under realistic, uniform, and code pressures. Both the numerical model and the tributary area method were used for the load-sharing calculations.

온도변화에 의한 콘크리트 포장도로의 구조 거동 연구 (Structural Behavior of Concrete Pavement Due to Temperature Variations)

  • 조병완
    • 전산구조공학
    • /
    • 제4권2호
    • /
    • pp.95-102
    • /
    • 1991
  • 콘크리트 포장도로의 일부구간에서 보이고 있는 심각한 균열파괴현상은 주하중인 차량하중외에 환경요소인 온도변화의 영향으로, 콘크리트 슬래브 상, 하면의 온도차이에 따라 위, 아래방향으로 오목하게 휘면서, 기초지반과 떨어지는 슬래브의 중앙 또는 줄눈부에 차량하중이 재하되어 발생된다. 이로 인하여 콘크리트슬래브에 종적, 횡적 균열이 발생하여 Faulting, Ravelling, Spalling, Scaling..등 파괴 현상이 심화되고 있다. 따라서 본 연구에서는 유한요소법을 이용한 강성행렬과 온도변화, 건조수축등으로 인한 등가절점하중을 유도하여 전국 여러지방의 온도변화 특성에 따른 역학적 거동현상을 연구하였다.

  • PDF

수평하중을 받는 플랫 플레이트 슬래브 해석을 위한 수정된 등가골조모델 (Modified Equivalent Frame Models for Flat Plate slabs Under Lateral Load)

  • 박영미;조경현;한상환;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.272-275
    • /
    • 2004
  • This study is to propose a modified equivalent frame method under lateral loading. ACI 318-02 allows the equivalent frame method to conduct slab analysis subjected to lateral loads. However, current method can not predict the behavior of the slabs particularly under lateral loading because the equivalent frame method in the ACI 318 has been developed against gravity loads. This study provides more precise model for the analysis of the flat plate slabs under lateral loading. The model reflect the force transfer mechanism of slabs, column and torsional member more accurately than the existing model. The accuracy of this model is verified by compared with finite element method analysis results.

  • PDF

Numerical study of steel box girder bridge diaphragms

  • Maleki, Shervin;Mohammadinia, Pantea;Dolati, Abouzar
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.681-699
    • /
    • 2016
  • Steel box girders have two webs and two flanges on top that are usually connected with shear connectors to the concrete deck and are also known as tub girders. The end diaphragms of such bridges comprise of a stiffened steel plate welded to the inside of the girder at each end. The diaphragms play a major role in transferring vertical and lateral loads to the bearings and substructure. A review of literature shows that the cyclic behavior of diaphragms under earthquake loading has not been studied previously. This paper uses a nonlinear finite element model to study the behavior of the end diaphragms under gravity and seismic loads. Different bearing device and stiffener configurations have been considered. Affected areas of the diaphragm are distinguished.

보강상세에 따른 RC 전단벽과 강재 보 전단접합부의 비탄성 거동 (Inelastic behavior of RC shear wall and steel girder shear connection on reinforcement details)

  • 송한범;이정한;양원직;강대언;이경훈;이원호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.138-141
    • /
    • 2006
  • Shear wall-frame system is one of the most, if not the most, popular system for resisting lateral loads. The core is the primary lateral load-resisting systems, the perimeter frame is designed for gravity loads, and the connection between perimeter frame and core is generally a shear connection. Specially, single plate shear connection have gained considerable popularity in recent years due to their ease of fabrication and erection. Single plate shear connection should be designed to satisfy the dual criteria of shear strength and rotational ductility. An experimental program was undertaken to evaluate seismic behavior of single plate shear connection. The main test variable is the reinforcing detail of connection. Through the experimental program, the cyclic behavior of typical and reinforcing single plate shear connection was established.

  • PDF

Modeling of RC Frame Buildings for Progressive Collapse Analysis

  • Petrone, Floriana;Shan, Li;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.1-13
    • /
    • 2016
  • The progressive collapse analysis of reinforced concrete (RC) moment-frame buildings under extreme loads is discussed from the perspective of modeling issues. A threat-independent approach or the alternate path method forms the basis of the simulations wherein the extreme event is modeled via column removal scenarios. Using a prototype RC frame building, issues and considerations in constitutive modeling of materials, options in modeling the structural elements and specification of gravity loads are discussed with the goal of achieving consistent models that can be used in collapse scenarios involving successive loss of load-bearing columns at the lowest level of the building. The role of the floor slabs in mobilizing catenary action and influencing the progressive collapse response is also highlighted. Finally, an energy-based approach for identifying the proximity to collapse of regular multi-story buildings is proposed.

Performance of retaining walls with and without sound wall under seismic loads

  • Mock, Erin;Cheng, Lijuan
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.909-935
    • /
    • 2014
  • The seismic characteristics of two semi-gravity reinforced concrete cantilever retaining walls are examined via an experimental program using an outdoor shake table (one with and the other without concrete masonry sound wall on top). Both walls are backfilled with compacted soil and supported on flexible foundation in a steel soil container. The primary damages during both tests are associated with significant lateral displacements of the wall caused by lateral earth pressure; however, no collapse occurs during the tests. The pressure distribution behind the walls has a nonlinear trend and conventional methods such as Mononobe-Okabe are insufficient for accurate pressure estimation.

Soil-pile interaction effects in wharf structures under lateral loads

  • Doran, Bilge;Seckin, Aytug
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.267-276
    • /
    • 2014
  • Wharfs are essential to shipping and support very large gravity loads on both a short-term and long-term basis which cause quite large seismic internal forces. Therefore, these structures are vulnerable to seismic activities. As they are supported on vertical and/or batter piles, soil-pile interaction effects under earthquake events have a great importance in seismic resistance which is not yet fully understood. Seismic design codes have become more stringent and suggest the use of new design methods, such as Performance Based Design principles. According to Turkish Code for Coastal and Port Structures (TCCS 2008), the interaction between soil and pile should somehow be considered in the nonlinear analysis in an accurate manner. This study aims to explore the lateral load carrying capacity of recently designed wharf structures considering soil-pile interaction effects for different soil conditions. For this purpose, nonlinear structure analysis according to TCCS (2008) has been performed comparing simplified and detailed modeling results.