• Title/Summary/Keyword: Gravity Injection Flow Rate

Search Result 14, Processing Time 0.022 seconds

THE ANALYTIC ANALYSIS OF THE CORE INJECTION COOLING FLOW RATE FOR EMERGENCY WATER SUPPLY SYSTEM IN HANARO (하나로 비상 보충수 공급계통의 노심 주입 냉각유량 해석)

  • Park Yong-Chul;Kim Bong-Soo;Kim Kyung-Ryun;Wu Jong-Sub
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.39-44
    • /
    • 2005
  • In HANARO, a multi-purpose research reactor of 30 MWth, the emergency water supply system consists essentially of an emergency water storage tank located in the level of about thirteen meter (13 m) above the reactor core, a three inch ('3\%') diameter water injection pipe line including injection valves from the tank to the reactor cooling inlet pipe and a test loop to do periodic system performance test. When the water level of the reactor pool comes down to the extremely low due to a loss of reactor pool water accident the emergency water stored in the tank should be fed to the core by the gravity force and at that time the design flow rate is eleven point four kilogram per second (11.4 kg/s). But it is impossible periodically to measure the injection flow rate under the emergency condition because the normal water level should be maintained during the reactor operation. This paper describes a flow network analysis to simulate the flow rate under the emergency condition. As results, it was confirmed through the analysis results that the calculated flow rate agrees with the design requirement under the emergency condition.

  • PDF

Gravity-Injection Core Cooling After a Loss-of-SDC Event n the YGN Units 3 & 4

  • Seul, Kwang-Woo;Bang, Young-Seok;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.476-485
    • /
    • 1999
  • In order to evaluate the gravity-injection capability to maintain core cooling after a loss-of-shutdown-cooling event during shutdown operation, the plant conditions of the Yong Gwang Units 3&4 were reviewed. The six cases of possible gravity-injection paths from the refueling water tank (RWT) were identified and the thermal-hydraulic analyses were performed using the RELAP5/MOD3.2 code. The core cooling capability was significantly dependent on the gravity-injection path, the RCS opening, and the injection rate. In the cases with the pressurizer manway opening higher than the RWT water level, the coolant was held up in the pressurizer and the system pressure continued increasing after gravity-injection. The gravity injection eventually stopped due to the high system pressure and the core was uncovered. In the cases with the injection path and opening on the same leg side, the core cooling was dependent on whether the water injected from the RWT passed the core region or not. However, in the cases with the injection path and opening on the different leg side, the system was well depressurized after gravity-injection and the core boiling was successfully prevented for a long-term transient. In addition, from the sensitivity study on the gravity-injection flow rate, it was found that about 54 kg/s of injection rate was required to maintain the core cooling and the core cooling could be provided for about 10.6 hours after event with that injection rate from the RWT. Those analysis results would provide useful information to operators coping with the event.

  • PDF

Study on Scaling Analysis and Design Methodology of Passive Injection Test Facility (피동 주입 시험 장치의 척도 해석 및 설계 방법론 연구)

  • Bae, Hwang;Lee, Minkyu;Ryu, Sung-Uk;Shin, Soo Jai;Kim, Young-In;Yi, Sung-Jae;Park, Hyun-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.50-60
    • /
    • 2016
  • A design methodology of the modeled test facility to conserve an injection performance of a passive safety injection system is proposed. This safety injection system is composed of a core makeup tank and a safety injection tank. Individual tanks are connected with pressure balance line on the top side and injection line on the bottom side. It is important to conserve the scaled initial injection flow rate and total injection time since this system can be operated by small gravity head without any active pumps. Differential pressure distribution of the injection line induced by the gravity head is determined by the vertical length and elevation of each tank. However, the total injection time is adjustable by the flow resistance coefficient of the injection line. The scaling methodology for the tank and flow resistance coefficient is suggested. A key point of this test facility design is a scaling analysis for the flow resistance coefficient. The scaling analysis proposed on this paper is based on the volume scaling law with the same vertical length to the prototype and can be extended to a model with a reduced vertical length. A set of passive injection test were performed for the tanks with the same volume and the different length. The test results on the initial flow rate and total injection time showed the almost same injection characteristics and they were in good agreement with the design values.

HYSTERETIC MODELING ON THE CONVECTIVE TRANSPORT OF ORGANIC SOLVENT IN AN UNSATURATED SOIL ZONE

  • Lee, Kun-Sang
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.241-249
    • /
    • 2006
  • A mathematical model is described for the prediction of convective upward transport of an organic solvent driven by evaporation at the surface, which is known as the major transport mechanism in the in-situ photolysis of a soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD). A finite-element model was proposed to incorporate the effects of multiphase flow on the distribution of each fluid, gravity as a driving force, and the use of hysteretic models for more accurate description of k-S-p relations. Extensive numerical calculations were performed to study fluid flow through three types of soils under different water table conditions. Predictions of relative permeability-saturation-pressure (k-S-p) relations and fluids distribution for an illustrative soil indicate that hysteresis effects may be quite substantial. This result emphasizes the need to use hysteretic models in performing flow simulations including reversals of flow paths. Results of additional calculations accounting for hysteresis on the one-dimensional unsaturated soil columns show that gravity affects significantly on the flow of each fluid during gravity drainage, solvent injection, and evaporation, especially for highly permeable soils. The rate and duration of solvent injection also have a profound influence on the fluid saturation profile and the amount of evaporated solvent. Key factors influencing water drainage and solvent evaporation in soils also include hydraulic conductivity and water table configuration.

A Study on the Process Capability Analysis of MIM Product (금속분말 사출성형 제품의 공정능력분석에 관한 연구)

  • Choi, Byung-Ky;Lee, Dong-Gil;Choi, Byung-Hui
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.57-64
    • /
    • 2010
  • Metal Injection Molding (MIM) is attractive because it produces consistent, complex-geometry components for high-volume, high-strength, and high-performance applications. Also MIM using in optical communication field, display field, and semi-conductor field is a cost-effective alternative to metal machining or investment casting parts. It offers tremendous single-step parts consolidation potential and design flexibility. The objective of this paper is to study the suitability of design, flow analysis, debinding and sinterin processes, and capability analysis. The suitable injection conditions were 0.5~1.5 second filling time, 11.0~12.5 MPa injection pressure derived from flow analysis. The gravity of the product is measured after debinding an sintering. The maximum and minimum gravity levels are 7.5939 and 7.5097. the average and standard deviation are 7.5579 and 0.0122; when converted into density, the figure stands at 98.154%. According to an analysis of overall capacity, PPM total, which refers to defect per million opportunities(DPMO), stands at 166,066.3 Z.Bench-the sum of defect rates exceeding the actual lowest and highest limits-is 0.97, which translates into the good quality rate of around 88.4% and the sigma level of 2.47.

Experimental research of Pressure-Volume-Temperature mass gauging method using instantaneous analysis under cryogenic homogeneous condition (순간 해석 기법을 이용한 PVT 잔량 측정법의 극저온 균일 온도 조건에서의 실험적 연구)

  • Seo, Man-Su;Jeong, Sang-Kwon;Jung, Young-Suk;Ku, Dong-Hun;Ji, Dong-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • In the extreme conditions of launch vehicle in a space, such as cryogenic temperature and low-gravity environment, the mass gauging of remaining propellants becomes a difficult problem. Pressure-volume-temperature (PVT) method is one of the attractive mass gauging methods under low-gravity due to its simplicity and reliability. PVT gauging experiment with various mass flow rates of helium injection is carried out with the experimental apparatus creating cryogenic homogeneous condition as the condition of low-gravity. Experimental results are analyzed by a novel PVT gauging analysis method which considers all instantaneous changes of pressure and temperature in the ullage volume with small time intervals. It is observed that the gauging error from the novel PVT gauging analysis is -0.11% with 2 slpm mass flow rate of helium injection.

Transcervical Embryo Recovery in Korean Black Goats: A Preliminary Experiment

  • Lee, Doo-Soo;Kim, Dong-Woo;Shin, Sang Tae
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.171-174
    • /
    • 2015
  • Four pluriparous Korean black goat does were superovulated with FSH and mated with fertile bucks. Anesthetized animals were placed in lateral recumbency, then size 8 Foley catheter was inserted into the uterus through the cervix under the vaginal speculum and the balloon was inflated to fix the catheter in the uterine body. The opposite end of the catheter was connected to a 3-way and a flushing medium was infused into the uterus. Modified Dubecco's PBS with 1% FBS was used as the flushing medium. Four goats were allocated in two groups depending on the type of medium infusion into uterus. Injection group; the flushing medium was injected into uterus and the infused medium was collected by to-and-fro method using a syringe. Gravity-flow group; the flushing medium was allowed to enter the uterus by gravity flow by lifting the medium bottle and drained out of the uterus into a collecting tube. All four goats had catheter inserted through the cervix and uteri flushed successfully. The volume (recovery rate) of recovered medium varied considerably from 87 ml/200 ml (43.5%) to 148 ml/160 ml (92.5%). Nine embryos/ova in total were recovered from Gravity-flow group goats. Although the embryo recovery rate was low, the possibility of a transcervical embryo recovery in Korean black goat had been proven in this preliminary experiment.

Numerical Simulation on Characteristics of Laminar Diffusion Flame Placed Near Wall in Microgravity Environment (미소중력 환경내의 벽면 근방 확산 화염 특성에 관한 수치 해석)

  • Choi Jae-Hyuk;Fujita Osamu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.140-149
    • /
    • 2006
  • Characteristics of a laminar diffusion flame placed near wall in microgravity have been numerically analyzed in a two-dimension. The fuel for the flame is $C_2H_4$. The flame is initiated by imposing a high temperature ignition source. The flow field, temperature field, and flame shape in microgravity diffusion flame are detailed. Especially, effects of surrounding air velocity and fuel injection velocity on the microgravity diffusion flame have been discussed accounting for standoff distance. And, the effect of curvature rate has been also studied. The results showed that velocities in a diffusion flame were overshoot because of volumetric expansion and distribution of temperature showed regularity by free-buoyancy This means that the diffusion flame in microgravity is very stable, while the flame in normal gravity is not regular and unstable due to buoyancy. Standoff distance decreases with increase in surrounding air velocity and with decrease in fuel injection velocity. With increasing curvature rate, the position of reaction rate moves away the wall.

An Experimental Study on Flow Distributor Performance with Single-Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 유동분사기 성능에 대한 실험연구)

  • Ryu, Sung Uk;Bae, Hwang;Yang, Jin Hwa;Jeon, Byong Guk;Yun, Eun Koo;Kim, Jaemin;Bang, Yoon Gon;Kim, Myung Joon;Yi, Sung-Jae;Park, Hyun-Sik
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.124-132
    • /
    • 2016
  • In order to estimate the effect of flow distributors connected to an upper nozzle of CMT(Core Makeup Tank) on the thermal-hydraulic characteristics in the tank, a simplified 2 inch Small Break Loss of Coolant Accident(SBLOCA) was simulated by skipping the decay power and Passive Residual Heat Removal System(PRHRS) actuation. The CMT is a part of safety injection systems in the SMART (System Integrated Modular Advanced Reactor). Each test was performed with reliable boundary conditions. It means that the pressure distribution is provided with repeatable and reproducible behavior during SBLOCA simulations. The maximum flow rates were achieved at around 350 seconds after the initial opening of the isolation valve installed in CMT. After a short period of decreased flow rate, it attained a steady injection flow rate after about 1,250 seconds. This unstable injection period of the CMT coolant is due to the condensation of steam injected into the upper part of CMT. The steady injection flow rate was about 8.4% higher with B-type distributor than that with A-type distributor. The gravity injection during hot condition tests were in good agreement with that during cold condition tests except for the early stages.

Development of an ECCS Injection Model By Gravity and Flow Rate Distributions in the Passive Reactor Systems (비상노심냉각수의 중력에 의한 주입 및 피동형노심내의 흐름율 분포모델의 개발)

  • Lim, H.G.;Kim, G.S.;Lee, U.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.562-569
    • /
    • 1994
  • In this study improvement of transient analysis model, KOTRAC, for the passive reactor has been performed. In the KOTRAC, mixture drift flux model is adopted to simulate thermal hydraulic behavior, which can simulate ECCS injection in the passive plant. However, there is a difficulty to handle complete phase separation phenomena due to the near-zero density, which may occur in the pressurizer surge line or horizontal flow paths. In this study, a couple of model changes to over-come Courant limit feilure has been examined. One of key features is to substitute flow distribution parameters with Ishii's correlation. Corrected results are nil compared to those of RELAP/MOD3 analysis.

  • PDF