• Title/Summary/Keyword: Gravity Effect

Search Result 865, Processing Time 0.034 seconds

Effect of the Gravity Forces on Flow Pattern and Frictional Pressure Drop in Two-Phase, Two-Component Flow

  • Choi, B.-H;Han, W.-H
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.338-346
    • /
    • 2004
  • Experimental data on the effect of the variable gravity magnitude, namely microgravity, normal gravity and hyper-gravity, on flow pattern and frictional pressure drop were obtained during co-current air-water flow in a horizontal tube, The flow patterns were found to depend strongly on the gravity magnitude and certain flow pattern were found to depend on the gas superficial velocity. The effect of the gravity magnitude had an effect on the frictional pressure drop only at low flow rates. The present data are used to evaluate some of existing flow pattern transition and pressure drop models and correlations.

Isokinetic Evaluation of Knee Flexors and Extensors on the Effect of Gravity (중력의 영향에 따른 슬관절 굴곡근과 신전근의 등속성운동 평가)

  • Chae Yun-Won;Jeong Dong-Hun;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.10 no.1
    • /
    • pp.45-52
    • /
    • 1998
  • Since isokinetic concise can give an evaluation of muscle strength with great accuracy and objectively, it is widely used as the one of the important methods for evaluation of muscle performance. The purpose of this investigation was to compare values uncorrected for gravity with values corrected for gravity and to determine the effect of making this correction on knee flexors and extensors at three speeds. This investigation measured values isokinetically at $60^{\circ}/sec,\;120^{\circ}/sec,\;and\;180^{\circ}/sec$ in 14 male and 17 fermale university students. The gravity effect torque(GET) is the torque resulting from the effect of gravity on the combined weight of the leg and dynamometer arm. The GET was added to the measured extensors peak torque and subtraced from the flexors peak torque to yield gravity corrected values. Failure to consider GET greatly underetimated extensors torque and overtestimated flexors torque. Physical therapists must remember the importance of making the gravity correction in patients with reduced torque output where the gravitational torque is a greater percentage of the measured torque to ascertain correctly the relative strength of antagonists inversely affected by gravity.

  • PDF

Numerical investigation of the gravity effect on the shape of natural supercavity

  • Pouraria, Hassan;Park, Warn-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.58-64
    • /
    • 2011
  • The objective of this paper is to investigate the gravity effect on the shape characters of natural supercavity. A finite difference solver along with an implicit, dual time, preconditioned, three-dimensional algorithm has been used to solve the two-phase Navier Stokes equations. Numerical solutions were performed for natural supercavitating flow past a disk for different cavitation and Froud numbers. The numerical results were compared with corresponding analytical results in quantitative manner and it was found that the shape of supercavity was reasonably predicted Numerical results indicated that the gravity effect can induce the asymmetry of supercavity. The asymmetry was apparent when the froud number was smaller so that for constant cavitation number when we reduced the froud number the opt of the axis of supercavity increased. Moreover, for specific froud number a decrease in cavitation number resulted in an increase in the offset of the supercavity Numerical results revealed that for froud number greater than 25 the gravity effect is negligible.

  • PDF

The Study of Prediction Method of Cavity Shape Considering Both Gravity Effect and Angle of Attack of Cavitator (중력효과 및 캐비테이터 받음각 고려 공동 형상 예측기법 연구)

  • Kim, Minjae;Yi, Jongju;Kim, Sunbum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.180-187
    • /
    • 2018
  • In this study, we develop a prediction method of cavity shape taking gravity effect and angle of attack of cavitator into consideration simultaneously. Logvinovich's theoretical formulas are superimposed to predict the change of cavity centerline due to both gravity effect and angle of attack of cavitator. It is found that as the angle of attack of cavitator increases, the gravity effect is weakened due to decrease in cavity volume, and even in case of the same angle of attack, cavity shape changes in different ways depending on whether the angle of attack of cavitator is positive or negative. We conclude that cavity shapes are largely affected by the angle of attack of cavitator, and the gravity effect and angle of attack of cavitator should be considered at the same time for the prediction of cavity shape.

A study on the shape of supercavitation center line change according to the gravity and angle of attack effect (중력효과와 받음각 효과에 따른 초공동 형상 중심선 변화에 관한 연구)

  • Yi, Jong-Ju;Kim, Min-Jae;Paik, Bu-Geun;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.1
    • /
    • pp.18-28
    • /
    • 2022
  • In this study, a cavity shape measurement experiment was conducted by changing the diameter and the angle of attack of a disk cavitator. Since the gravity effect is proportional to the cavity volume, the larger the cavity, the greater the effect. It is concluded that the gravity effect becomes smaller as the cavitation number decreases because of a short cavity maintaining time. The cavity centerline rises in case of the positive angle of attack and descends in case of the negative angle of attack. Since the effect of the angle of attack is inversely proportional to the square of the cavity radius, the effect of the angle of attack becomes dominant in the vicinity of the cavitator. It is judged that the horizontal section of the cavity centerline cannot be extended because the factors affecting the gravity effect and the angle of attack effect are different.

Application of the Indirect Effect on Regional Gravith Fielcs in the North Atlantic Ocean (北大西洋 重力場에 적용한 Indirect Effect)

  • 정우열;필립로
    • 한국해양학회지
    • /
    • v.22 no.1
    • /
    • pp.19-24
    • /
    • 1987
  • Gravity measurements at sea are considered to be made on the geoid. The free-air anomalies are then determined by subtracting the theoretical gravity values predicted on a reference ellipsoid from the observed values. The gravity effect due to the height difference between the geoid and reference ellipsoid and the mass between them is known as the 'indirect effect'. The result of applying the indirect effect to surface ship derived gravity anomalies in the North Atlantic Ocean demonstrates the importance of its inclusion for regional stuedies involving mantle processes.

  • PDF

The Effect of Attraction by the Atmosphere to Gravity (중력(重力)의 대기보정(大氣補正)에 대(對)한 연구(硏究))

  • Choi, Kwang-sun
    • Economic and Environmental Geology
    • /
    • v.16 no.2
    • /
    • pp.79-81
    • /
    • 1983
  • The effeet of the mass of the earth's atmosphere for gravity is studied. The computed correction value of the air mass effect is g=+0.86-0.0978 h (km) mgal and has always positive sign. In comparision with usual gravity works. this value is relatively large. So that, all gravity works always carry out this correction.

  • PDF

Ice mass balance over the polar region and its uncertainty (극지방 빙하량 변화 (ice-mass balance) 관측과 에러 분석)

  • Seo, Ki-Weon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.63-72
    • /
    • 2007
  • Current estimates of the ice-mass balance over the Greenland and the Antarctica using retrievals of time-varying gravity from GRACE are presented. Two different GRACE gravity data, UTCSR RL01 and UTCSR RL04, are used for the estimates to examine the impact of the relative accuracy of background models in the GRACE data processing for inter-annual variations of GRACE gravity data. In addition, the ice-mass balance is appraised from the conventional GRACE data, which represents global gravity, and the filtered GRACE data, which isolates the terrestrial gravity effect from GRACE gravity data. The former estimate shows that there exists similar negative trends of ice-mass balance over the Greenland from UTCSR RL01 and UTCSR RL04 while the time series from the both GRACE data over the Antarctica differ significantly from each other, and no apparent trends are observed. The result for the Greenland from the latter calculation is similar to the former estimate. However, the latter calculation presents positive trends of ice-mass balance for the Antarctica from both GRACE data. These results imply that residual oceanic geophysical signals, particularly for ocean tides, significantly corrupt the ice-mass estimate over the Antarctica as leakage error. In addition, the spatial alias of GRACE is likely to affect the ice-mass balance because the spatial spectrum of ocean tides is not conserved via GRACE sampling, and thus ocean tides contaminate terrestrial gravity signal. To minimize the alias effect, I suggest to use the combined gravity models from GRACE, SLR and polar motion.

  • PDF

IMPROVED EARTHQUAKE RESISTANT DESIGN OF MULTISTORY BUILDING FRAMES (고층건물 내진설계기법의 개선)

  • Lee, Dong-Guen-;Lee, Seok-Youn-
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.72-78
    • /
    • 1991
  • An improved procedure for earthquake resistant design of multistory building structures is proposed in this study. The effect of gravity load on seismic response of structures is evaluated through nonlinear dynamic analyses of a single story example structure. The presence of gravity load tends to initiate plastic hinge formation in earlier stage of a strong earthquake. However, the effect of gravity load seems to disapper as ground motion is getting stronger. And one of shortcomings in current earthquake resistant codes is overestimation of gravity load effects when earthquake load is applied at the same time so that it may leads to less inelastic deformation or structural damage in upper stories, and inelastic deformation is increased in lower stories. Based on these observation, an improved procedure for earthquake resistant design is derived by reducing the factor for gravity load and inceasing that for seismic load. Structures designed by the proposed design procedure turned out to have increased safety and stability against strong earthquakes.

  • PDF

Gravity and Angular Velocity Profile Effects on the Balancing Performance of an Automatic Ball Balancer (자동볼평형장치의 밸런싱 성능에 대한 중력과 속도파형의 영향)

  • 정진태;정두한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.418-423
    • /
    • 2003
  • The balancing performance of an automatic ball balancer (ABB) in the vertical or horizontal position is studied in this paper. Considering the effects of gravity and angular velocity profiles, a physical model for an ABB installed on the Jeffcott rotor is adopted. The non-linear equations of motion for the rotor with ABB are derived by using Lagrange's equation. Based on derived equations, dynamic responses for the rotor are computed by using the generalized-u method. From the computed responses, the effects of gravity and angular velocity profiles on the balancing performance are investigated. It is found that the rotor with ABB can be balanced regardless of the gravity effect. It is also shown that a smooth velocity profile yields relatively smaller vibration amplitude than a non-smooth velocity profile.

  • PDF