• 제목/요약/키워드: Gravity Compensator

검색결과 20건 처리시간 0.03초

로봇팔을 위한 중력보상기 연구 (A Study on a Gravity Compensator for the Robot Arm)

  • 최형식;김동호;허재관
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.226-232
    • /
    • 2009
  • In this paper, a design and analysis of a gravity compensator which is a new device to reduce the joint torque of robots caused due to gravity is presented. Joints of all robots are loaded by large torques due to gravity. By applying the gravity compensator to the robot joints, the load torques applied to the robot joints are reduced by the repulsive force of the gravity compensator such that the size of the joint actuation motor can be reduced. In this paper, the structure and force relation of the gravity compensator are analyzed. The superior performance of the proposed gravity compensator is verified through experiments which measure the joint motor current caused by the load applied to the robot link.

중력보상기를 적용한 이족보행로봇 연구 (A study on the Biped Walking Robot applying a Gravity Compensator)

  • 최형식;나원현;김동호;추우헌
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.55-62
    • /
    • 2010
  • In this paper, the structure of a new gravity compensator was studied, and the biped walking robot applying a gravity compensator was presented to improve the performance of the robot. The robot had 13 degree of freedom and is driven by the joint actuator with the gravity compensator. Each leg of the robot is composed of six joints three joints at the hip, a joint at the knee, and two joints at the ankle. The leg of the robot was designed to support 74kg weight including 30kg payload thanks to the gravity compensator. The performance of the robot was presented by reducing the payload applied to the leg joint of the robot thanks to the gravity compensator.

중력보상기 기반의 하지용 외골격 장치 설계 연구 (Study of a Gravity Compensator for the Lower Body)

  • 최형식;김동호;전지광
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.455-462
    • /
    • 2011
  • This paper is about the design of a new gravity compensator for the lower body exo-skeleton device. The exo-skeleton devices is for increasing the torque of the human body joint for the purpose of helping the disabled, workers in the industry, and military soldiers. So far, most of studied exo-skeleton devices are actuated by the motors, but motors are limited in energy such that a short durability is always a big problem. In this paper, a new gravity compensator is proposed to reduce the torque load applied to human body joints due to gravity. The gravity compensator is designed using a tortional bar spring, and its structure and characteristics are studied through the test and computer simulation. A design concept on the exo-skeleton device using the gravity compensator is presented. An analysis and computer simulation on the torque reduction of the proposed exo-skeleton device that applies and non-applies the gravity compensator are performed.

중력 보상기를 적용한 로봇 매니퓰레이터 연구 (Study on Robot Manipulator applying the Gravity Compensator)

  • 최형식;허재관;서해용;홍성율
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.267-274
    • /
    • 2010
  • 중력보상기의 구조에 대해 연구하였고, 이를 적용하여 로봇 관절의 성능을 개선하기 위하여 새롭게 개발한 6축의 로봇 매니퓰레이터에 대해 설명한다. 로봇의 기구학 해석을 하였다. 또한, 다양한 스프링으로 구성된 중력보상기를 적용한 로봇 관절구동기의 성능에 대하여 시뮬레이션 하였다. 시뮬레이션 결과에 따르면, 중력보상기를 적용한 로봇 매니퓰레이터의 관절에 가해지는 외부부하는 중력보상기에 사용되는 스프링의 강도에 비례하여 줄어드는 것이 검증되었다.

토션바 중력보상기를 적용한 하지용 외골격 장치 실험연구 (Experimental Study of a lower body exoskeleton applying a torsion bar gravity compensator)

  • 최형식;이동준;윤종수
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2011년도 후기공동학술대회 논문집
    • /
    • pp.97-98
    • /
    • 2011
  • This paper is about the study of a new exo-skeleton device applying a gravity compensator. The exo-skeleton devices is to reduce the external torque applied to the human body joint for the purpose of helping the disabled, reducing heavy payload for industry workers or military soldiers. Most of the exoskeleton devices are actuated by the motors, but motors are limited in energy such that a short durability is always a big problem. In this paper, an exoskeleton device using a new gravity compensator based on a torsion bar is proposed to reduce the torque load applied to human body joints. The exoskeleton device is designed for the lower body of human. Analyses on the torsion bar spring and link of the exoskeleton device using FEM method were performed. To reduce the applied torque to the human joint, a torsion bar gravity compensator is applied to the exoskeleton. The effect of the torsion bar compensator for the exoskeleton device was verified through load test using developed test equipment.

  • PDF

Roll-pitch 중력 보상 기구 설계 (Gravity Compensator for the Roll-pitch Rotation)

  • 조창현;이우섭;강성철
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.688-694
    • /
    • 2010
  • This paper presents a gravity compensator for the manipulator of a service robot. The manipulator of a service robot is operated with low velocity for the safety reason in most cases. In this situation gravitational torques generated by the mass of links are often much greater than dynamic torques for motion. A gravity compensator can counterbalance the gravitational torques, thereby enabling to utilize relatively low power motors. In this paper the gravity compensation for the roll-pitch rotation is considered which is often used for the shoulder joints of the manipulator of a service robot or humanoid robot. A gimbals is implemented and two 1-dof gravity compensators are equipped at the base. One compensates the gravitational torque at the roll joint and another provides the compensational torque for the gimbals. Various analyses showed that the proposed compensator can counterbalance the gravitational torques of 87% at the pitch joint and 50% at the roll joint. It is verified from dynamic simulations that the proposed compensator effectively counterbalances the gravitational torques.

중력보상기를 적용한 로봇 팔의 실험적 연구 (Experimental Study of the Robot Arm Applying the Gravity Compensator)

  • 최형식;서해용;엄태웅;윤종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권1호
    • /
    • pp.60-67
    • /
    • 2011
  • 본 논문에서는 중력보상기의 구조에 대해 연구하였고, 이를 적용하여 토크 성능을 개선하고 위치 오차를 줄이는 새로운 구조의 6축 다관절 로봇 매니퓰레이터에 대하여 연구하였다. 로봇 팔의 기구해석을 하였다. 또한, 로봇 팔의 1 및 2 축에 중력보상기를 적용한 관절구동기의 성능시험을 하였다. 성능 시험결과, 중력보상기를 적용한 로봇 관절구동기의 외부부하와 반복위치 오차가 대폭 감소됨이 검증되었다.

비틈 봉 중력보상기를 적용한 외력증강기 구조해석 (Structure Analysis of an Exoskeleton with a Torsion Bar Gravity Compensator)

  • 최형식;이동준;조종래
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.467-475
    • /
    • 2012
  • 이 논문에서는 비틈 봉을 기반으로 한 중력보상기가 적용된 새로운 외력증강기를 이용하여 인체 다리관절에 작용하는 부하를 경감시키는 방법에 대해 제안한다. 비틈 봉 특성을 추정하고 측정하기 위하여 설계와 구조 해석을 행하였다. 설계와 구조해석을 바탕으로 매우 경량이고 소형인 새로운 외력증강기를 개발하였다. 구조해석은 외력증강기를 매우 경량으로 하기위해 최적두께의 링크에 대한 FEM해석을 행하였다.

단일모드 광섬유 Mach-Zehnder간섭계의 안정화를 위한 추적궤환 보상기의 설계 (Design of phase tracking feedback compensator for stabilization of single mode fiber-optic Mach-Zehnder interferometer)

  • 이기완;오문수;홍봉식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.547-552
    • /
    • 1989
  • Single mode optical fiber interferometeric sensors using phase tracking homodyne detection are typically susceptible to environmentally induced temperature fluctuations and other types of disturbances. In this paper compensator is described, which is a simple and effective phase tracking feedback electronic circuit must be output signal stabilized to achieve maximln sensitivity and linearity of Mach-Zehnder fiber-optic interferomter in the presence of differential phase drift. The phase tracking range of the piezoelectric cylinder in the reference arm is .+-.3.7.pi.rad, and the probe mass about 1 gram in the sensing ann was used for measurements of the gravity acceleration.

  • PDF