• Title/Summary/Keyword: Gravity Balance

Search Result 116, Processing Time 0.021 seconds

Kinematic Analyses of Scapula Depression in Cucarachas Movements in Dance Sport Rumba (룸바 쿠카라차 댄스 시 견갑골 하강에 따른 운동학적 분석)

  • Lee, Jin;Oh, Cheong-Hwan;Huh, Eun-Hye
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • In dance sport, hip movement is the most basic and essential technique, connecting the body movements to make the body move organically, and providing an overall balance of body movements. From that perspective, this study focused on the Cucarachas movement, representing a series of efficient hip movements in the center of gravity. For the purposes of this study, 4 dance sport participants who had won prizes at international contests were selected in order to analyze such variables as the radius of gyration (shift) on the hips and the shift of the center of gravity when scapula depression was performed and when it was not. To examine differences in these kinematic variables, a paired t-test was conducted, resulting in the following findings: First, the dancers were found to be able to control scapula depression, and a significant difference was observed in the vertical axis(Z) between the times when scapula depression was performed and when it was not. Second, when scapula depression was performed, shifts in the left-right axis(X) and anterior-posterior axis(Y) were found; the left-right axis showed a greater difference than the anterior-posterior axis. Third, scapula depression was found to have an influence on the shift to the left-right axis(X) of the center of gravity.

Effects of Self Exercise Program on Leg Length and Balance in Subjects with Leg-Length Discrepancy

  • Shin, Hyungsoo;Kim, Hyunsung
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.4
    • /
    • pp.2197-2202
    • /
    • 2020
  • Background: If there is a difference in leg length, the center of gravity shifts unilaterally toward the short leg, causing loss of balance and secondary postural imbalance, trunk muscle tone changes, gait abnormalities and pelvic imbalance. Objectives: To investigate effects of self exercise program on leg length, balance in adults with leg-length discrepancy. Design: Single blind randomized controlled trial. Methods: Twenty-eight participants were selected and divided into resistance exercise, flexibility exercise, and core exercise. Each exercise was performed for 40 minutes, 3 times a week for 6 weeks. Leg length and balance before and after exercise were measured and analyzed. Results: Following the interventions, resistance exercise group showed significant improvement in balance, but leg length difference did not show significant results. Flexibility exercise group showed significant improvement in leg length difference, but balance did not show significant results. Core exercise group showed significant improvement in leg length difference and balance. There was no significant difference in the comparison between the three groups. Conclusion: This study suggests that customized exercise according to the patient's level is beneficial to the patients.

Immediate Effect of Elastic and Non-Elastic Ankle Taping on Postural Balance and Gait Ability in Subject with Stroke (뇌졸중 환자의 탄력-비탄력 발목 테이핑 적용이 자세균형과 보행능력에 미치는 일시적 효과)

  • Yo Han Yoo;Jin Tae Han
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.1
    • /
    • pp.52-61
    • /
    • 2023
  • Background: The purpose of this study was to investigate the immediate effects of ankle elastic and non-elastic taping on postural balance and gait ability in subject with stroke. Design: Cross-sectional study Methods: Twenty-seven subjects with stroke participated in this study. The subjects performed to stand quietly for 30s on the balance platform and walking test with three different ankle taping conditions. The sway length, sway area and sway velocity of center of gravity (COG) displacement was measured to assess the postural balance and the timed up and go test, 10m walking test, 6 minutes walking test was measured to assess the gait ability. Repeated measured ANOVA was used to compare the postural balance parameters and gait ability according to three different ankle taping conditions. Results: Postural balance with non-elastic ankle taping was significantly improved compared to no ankle taping and elastic ankle taping condition(p<0.05). On the other hand, gait ability with elastic ankle taping was significantly increased compared to no ankle taping and non-elastic ankle taping condition(p<0.05). Conclusion: These findings suggest that an elastic ankle taping could effect to improve the gait ability, whereas a non-elastic ankle taping could effect to improve the postural balance in subject with stroke.

A Passive Gravity-Compensation System for Articulated Robots (수직다관절 로봇의 중력보상장치 개발 및 성능 분석)

  • Lee, Yong-Ho;Sin, Yong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.481-488
    • /
    • 2000
  • This paper presents a new passive gravity -compensating system for articulated robot manipulators. The system, which consists of linear zero- free -length springs, achieves exact counterbalancing o f the gravitational loads throughout the entire range of the manipulator workspace, A basic concept is to design springs such that the total potential energy of the system including the manipulator and the springs should be maintained constant. A prototype has been developed for a direct-drive five-bar manipulator and its performances have been investigated. Results show that the gravity-induced motor torques have been reduced to less than 5% of those of uncompensated robots. Also, the gravity-compensating system simplifies the position control algorithm while maintaining the trajectory-tracking errors in a satisfactory level. In conclusion, the proposed system efficiently improves the manipulator performances by reducing the driving motor size and the energy consumption as well as by simplifying the control systems.

Performance Evaluation of Balance Ability Equipment Using VR (VR을 이용한 균형능력 측정장비의 성능평가)

  • Yoon, Sangcheol;An, Howon;Ahn, Taekwon;Choi, Haesung;Lee, Byoungkwon;Seo, Dongkwon;Lee, Kyuhwan;Jung, Sangwoo;Yi, Jaehoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.3
    • /
    • pp.33-41
    • /
    • 2020
  • Purpose : Conventional Balance Measurement can only measure the center of gravity and the shaking movement of the body. As a result, it has the disadvantages of not responding to visual changes and blocking functions of variables. This study was carried out to evaluate the performance of new equipment that measures the balance of the body using changes in body segment and pressure using the acceleration sensor to compensate for the disadvantages of the existing equipment. Methods : To this end, balance ability was measured in 43 healthy male/female adults without orthopedic injuries and nervous system damage in the last 6 months. in a situation where the visual information was restricted by Virtual Reality (VR) gear, all subjects measured and evaluated the balance ability utilizing the new equipment. Balance measurement (Prime Medilab, Korea) and Wii fit (Nintendo, Japan) were used to measure the balance ability of the subjects, and the balance ability test was performed in 4 postures using each device for data acquisition. The test duration for each posture was 30 seconds. For data acquisition, the average value of three experiments measured using each equipment was analyzed, and the statistical test was performed using the independent sample and the corresponding sample t-test, and the significance level was set to α=.05. Results : As a result of measuring the balance ability using individual equipment, blocking visual information using VR gear, the average speed, maximum speed, and moving area of the COP increased equally. It was found that the obtained absolute size of the result in Wii was somewhat larger than that of BM. Conclusion : It is considered that in the future research, it is necessary to measure changes in the body's center of gravity through image analysis, etc., to make clear comparison and evaluation of the usability.

Transient Effects of Calf Muscle Fatigue and Visual Control on Postural Balance During Single Leg Standing

  • Han, Jin-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.67-71
    • /
    • 2017
  • PURPOSE: Muscle fatigue is a cause to change proprioception. The purpose of this study was to investigate the effects of calf muscle fatigue and visual control on postural balance during single-legged standing in healthy adults. METHODS: Nineteen healthy adults (male) were participated in this study (mean age: 24.36 years; mean height: 171.32 cm; mean weight: 64.58 kg). The postural balance (sway length, sway area, sway velocity of COG displacement) was measured by Balance Trainer System (BT4) in before and after calf muscle fatigue feeling in single legged stance. In this study, repetitive single-legged heel rise test was used to induce fatigue of the calf muscle. Paired t- test was used to compare the postural balance between before and after calf muscle fatigue. Data of subjects were analyzed using SPSS 22.0 (SPSS Inc., Chicago, IL, USA). Level of significance was set to .05. RESULTS: The sway length, sway area, sway velocity of COG (center of gravity) displacement after calf muscle fatigue feeling was significantly increased compared to before calf muscle fatigue feeling during single leg standing both eye open and close conditions (p<.05). CONCLUSION: This study suggested that calf muscle fatigue feeling has affected on postural balance when standing one leg both eye open and close conditions and postural control was disturbed by muscle fatigue and visual feedback in single leg standing.

Meridian Sinews and Sagittal Spinal Balance (경근(經筋)과 인체 시상균형에 관한 소고(小考))

  • Nam, Tong-Hyun;Shin, Sang-Hun
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.13 no.2
    • /
    • pp.129-139
    • /
    • 2009
  • Sagittal spinal balance means standing postural balance at sagittal plane. Postural imbalance with displacement of the patient's center of gravity can cause chronic back pain and ambulatory difficulty. The sagittal spinal balance is determined based on the deviation of the C7 plumb line, originating at the middle of the C7 vertebral body, from the posterior superior endplate of S1. The line is called as sagittal vertical axis (SVA). In the traditional Korean medicine, the meridian sinews, which are the most superficial pathways of the meridian system, associated with movement, muscle balance and defense. They too are separate from the main meridians, though they intersect the main meridians. Some creative and pioneer researchers in Korea thought that the anatomy trains, which suggested by Myers is a concept familiar to the meridian sinews. A reciprocal relationship between the superficial back line and the superficial front line used to be compared to the rigging of a sailboat. Therefore, We suggest that spine may be compared to a mast of the sailboat and that the sagittal spinal balance can be maintained with systemic reciprocal interacts between the front line muscles and the back.

  • PDF

The Effects of Lateral Wedged Insole to the Shoe of the Affected Side on Weight Bearing, Balance and Gait with Stroke (마비측에 적용한 외측 쐐기 깔창이 뇌졸증 환자의 체중부하율과 균형, 보행에 미치는 영향)

  • Kim, Hye-Lim;Shin, Won-Seob
    • PNF and Movement
    • /
    • v.11 no.2
    • /
    • pp.21-29
    • /
    • 2013
  • Purpose : The study was to evaluate the weight distribution, balance and gait function of stroke patients wearing lateral wedged insole to the shoe of the affected side. Methods : 27 patients with stroke (15 men, 12 women) participated in this study. Participants performed weight distribution, dynamic balance and gait ability with or without wedged insole on affected side in a random order. The balancia was used to evaluate the weight distribution. Deviation from the center line was analyzed by Dartfish during sit to stand to evaluate dynamic balance. The functional walk ability evaluated by 10 m walking velocity. Results : The asymmetry index of weight bearing improved significantly with wedged insole of affected side(p<.05). During sit to stand, center of gravity significantly moved from non-affected side to more mid line of body(p<.05). Improvement were shown in walking speed after wearing the wedged insole(p<.05). Conclusion : Wedged insole applied on affected side have a beneficial effect on weight distribution, dynamic balance and walking speed with stroke.

Effects of Unilateral or Bilateral Ankle Immobilization on Postural Balance During Quiet Standing (정적 서기 동안 한쪽 또는 양쪽 발목관절 고정이 자세균형에 미치는 영향)

  • Han, Jin Tae
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.3
    • /
    • pp.56-62
    • /
    • 2022
  • Background: The purpose of this study was to investigate the effects of ankle joint immobilization on postural balance during quiet standing. Design: Cross-sectional study Methods: Twenty-seven healthy subject participated in this study. The subjects performed to stand quietly for 30s in eyes open on the platform with three different conditions. The sway length, sway area and sway velocity of center of gravity (COG) displacement and limit of stability (LOS) was measured using the balance platform. Repeated measured ANOVA was used to compare the postural balance parameters depending on three different ankle immobilized conditions. Results: Sway length, sway area and sway velocity of the COG displacement with bilateral ankle immobilized condition was significantly increased compared to those of the other two conditions(p<0.05). All directions of LOS with bilateral ankle immobilized condition were significantly decreased compared to those of the other two conditions. Conclusion: These findings suggest that ankle joint immobilization could be one of the factors that interfere the maintaining of the postural balance in quiet standing.

Effect of occlusal balance on center of gravity in body (교합균형이 자세 중심(重心)에 미치는 영향에 관한 연구)

  • Lee, Yun;Choi, Dae-Kyun;Lee, Sung-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.2
    • /
    • pp.57-67
    • /
    • 2003
  • Suppose that dental occlusion is related to body posture. We want to find out that improving occlusal balance may affect vibration and distribution of C.O.P. in which way, by measuring change of posture and center of gravity (center of pressure, C.O.P.) which plays important role in measuring balance sensation. Total 11 students at Kyung Hee dental college students, 4 females and 9 males (age: 23-30) participated in this test, who have normal occlusion (Angle's classification I), no TMJ problems. All of the participants have no tooth loss except 3rd molar, no prosthesis over single tooth restoration, no orthopedic problems which affect balance sensation, and no otorhinolaryngological problems. First, we registrated bite by centric relation, and then fabricated stabilization splint that is increased 3.5mm vertical dimension around premolar region. By F-scan (Tekscan Inc., Boston, Mass), we measured discrepancy of average contact pressure of left and right foot. And we also measured discrepancy of vibration of C.O.P(center of pressure). before setting stabilization splint and after wearing stabilization splint at intervals of 1 week, 2 weeks, 3 weeks after. In normal human beings, improved occlusal balance by stabilization splint leads to decrease of vibration of C.O.P. (P<0.05). One week after wearing stabilization splint, vibration of C.O.P. decreased reliably (P<0.05), two weeks after wearing stabilization splint, vibration of C.O.P. decreased similarly comparing to before wearing and one week after wearing. (P<0.05) After two weeks and three weeks, however, it was hard to find reliability. (P>0.05) Difference between average contact pressure of right and left foot also decreased. (P<0.05) We could find decrease after one week of wearing stabilization splint (P<0.05) and two weeks after, the decrease was more reliable than one week after. (P<0.05) After two weeks and three weeks, however, it was hard to find reliability. Improvement of occlusal balance leads to decrease of vibration of C.O.P. and decrease of difference between right and left average contact pressure.