• 제목/요약/키워드: Gravitational Field

검색결과 164건 처리시간 0.028초

Unveiling the Properties of FLS 1718+59: A Galaxy-Galaxy Gravitational Lens System

  • Taak, Yoon Chan;Im, Myungshin
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.36.2-36.2
    • /
    • 2014
  • We present results of the analysis of FLS 1718+59, a galaxy-galaxy gravitational lens system in the Spitzer First Look Survey (FLS) Field. A background galaxy (z = 0.245) is severely distorted by an elliptical galaxy (z = 0.08), by gravitational lensing. We analyze this system by several methods, including Ellipse and Galfit fitting, gravitational lens modeling (gravlens), and SED fitting. Properties of the lens galaxy can be obtained: from Galfit we measure the effective radius and the average surface brightness inside it, and from gravlens we estimate the total mass inside the Einstein radius (lensing mass). We use these parameters to check that the lens galaxy is located on the Fundamental Plane. Also, we conduct SED fitting for the lens galaxy and estimate the stellar mass, and compare this with the lensing mass of the lens galaxy to check the M-L relation.

  • PDF

Moment of Inertia of Gas as a Source of Added Gravitational Field in Galaxies

  • Portnov, Yuriy A.
    • Journal of Astronomy and Space Sciences
    • /
    • 제39권2호
    • /
    • pp.59-65
    • /
    • 2022
  • In this paper we propose a new perspective for explaining galaxy rotation curves. We conjecture that there is a gravitational moment of inertia which, together with gravitational mass, contributes to the gravitational potential. We substantiate a formula for the potential created by the moment of inertia. We validate our model by computing orbital rotation velocities for several galaxies and showing that computed rotation velocities correspond to the observed ones. Our proposed approach is capable of accounting for constant gas velocities outside of a galactic disc without relying on the dark matter hypothesis. Furthermore, it addresses several problems faced by the application of the dark matter hypothesis, e.g., the absence of inward collapse of dark matter into a galaxy, the spherical distribution of dark matter around galaxies, and absence of traces of the effect of dark matter in two ultra-diffuse galaxies, NGC 1052-DF2, and NGC 1052-DF4.

남한지역에서의 초고차항 중력장모델 EGM2008의 정확도 분석 (Accuracy Analysis of Ultra-high degree Earth Gravitational Model EGM2008 in South Korea)

  • 황학;윤홍식;이동하;정태준
    • 대한토목학회논문집
    • /
    • 제29권1D호
    • /
    • pp.161-166
    • /
    • 2009
  • 고해상도, 고정밀도의 초고차항 전 지구 중력장모델은 현대측지학, 지구물리학, 지구동력학 및 해양학 등 다양한 과학 분야의 발전에 있어서 매우 중요한 의미를 가지고 있다. 본 연구에서는 최근 미국 국가지형정보국(NGA)에서 발표한 초고차항 중력장모델 EGM2008을 소개하고, 초고차항 중력장모델 개발에 있어서의 문제점과 연구현황을 살펴보았으며, 남한지역에서 의 정확도를 분석하였다. 우선 EGM2008을 기존의 전 지구 중력장모델 EGM96 및 한국의 고정밀 합성 지오이드모델인 KGEOID08과 모델 간 정밀도를 비교하였고, 위성측지기준점의 타원체고와 정표고를 이용해 절대 정확도를 평가하였다. 전반적으로 EGM2008은 KGEOID08과 비슷한 높은 정확도를 보였으며, 이는 향후 지역적 지오이드의 개발 또는 전 지구적인 중력장 분석에 큰 도움을 줄 것으로 판단된다.

Probing Tidal Field Strength of Virgo Cluster Galaxies

  • 윤혜인;정애리
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.74.2-74.2
    • /
    • 2011
  • We probe the tidal perturbation parameter f of Virgo cluster galaxies. The goal is to measure the strength of tidal fields around individual galaxies to get better understanding gravitational processes that can affect galaxy evolution in the cluster environment. The f-value is defined as a logarithmic ratio between the net internal gravitational force within a galaxy and the external tidal force exerted by a neighboring galaxy. Hence, it provides one way to quantify the tidal field strength of galaxies, in particular, due to galaxy neighbors. In this study, we determine f-values of the VIVA galaxies, samples of the VLA Imaging study of Virgo galaxies in Atomic gas, using the Extended Virgo Cluster Catalog (EVCC) which is the most complete Virgo cluster catalog to date. With diagnostics based on the HI gas and R-band morphologies, we discuss the impact of the tidal fields on the evolution of the VIVA sample. Also, we compare the tidal field strength to the intra cluster medium (ICM) pressure for each sample galaxy to pin down environmental processes at work.

  • PDF

STATISTICS OF GRAVITATIONAL LENSING BY A GALAXY IN CLUSTER OR IN FIELD

  • YOON SO-YOON;PARK MYEONG-GU
    • 천문학회지
    • /
    • 제29권2호
    • /
    • pp.119-136
    • /
    • 1996
  • To examine the effect of neighboring galaxies on the gravitational lensing statistics, we performed numerical simulations of lensing by many galaxies. The models consist of a galaxy in the rich cluster like Coma, or a galaxy surrounded by field galaxies in $\Omega_0 = 1$ universe with $\Omega_{gal} = 0.1,\;\Omega_{gal} = 0.3\;or\;\Omega_{gal}=1.0\;,\;where\;\Omega_{gal}$ is the total mass in galaxies. Field galaxies either have the same mass or follow Schechter luminosity function and luminosity-velocity relation. Each lensing galaxy is assumed to be singular isothermal sphere (SIS) with finite cutoff radius. In most simulations, the lensing is mainly due to the single galaxy. But in $\Omega_{gal} = 3$ universe, one out of five simulations have 'collective lensing' event in which more than two galaxies collectively produce multiple images. These cases cannot be incorporated into the simple 'standard' lensing statistics calculations. In cases where 'collective lensing' does not occur, distribution of image separation changes from delta function to bimodal distribution due to shear induced by the surrounding galaxies. The amount of spread in the distribution is from a few $\%\;up\;to\;50\%$ of the mean image separation in case when the galaxy is in the Coma-like cluster or when the galaxy is in the field with $\Omega_{gal} = 0.1\;or\;\Omega_{gal}=0.3.$ The mean of the image separation changes less than $5\%$ compared with a single lens case. Cross section for multiple image lensing turns out to be relatively insensitive to the presence of the neighboring galaxies, changing less than $5\%$ for Coma-like cluster and $\Omega_{gal}=0.1,\;0.3$ universe cases. So we conclude that Coma-like cluster or field galaxies whose total mass density $\Omega_{gal}<0.3$ do not significantly affect the probability of multiple image lensing if we exclude the 'collective lensing' cases. However, the distribution of the image separations can be significantly affected especially if the 'collective lensing' cases are included. Therefore, the effects of surrounding galaxies may not be negligible when statistics of lensing is used to deduce the cosmological informations.

  • PDF

Gravitational Microlensing Astrophysics

  • Han, Cheongho
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.29.1-29.1
    • /
    • 2016
  • I introduce the field of gravitational microlensing that I have worked on for more than 2 decades. I describe how microlensing can be applied to various fields in astrophysics including dark matter, Galactic structure, binary objects, and extrasolar planets and present my scientific achievements in the individual fields. I start with a description of basic microlensing physics and state how microlensing can be applied to various fields. Finally, I briefly describe ongoing efforts and future projects in microlensing.

  • PDF

DERIVATION OF THE GRAVITATIONAL MULTI-LENS EQUATION FROM THE LINEAR APPROXIMATION OF EINSTEIN FIELD EQUATION

  • KANG SANGJUN
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.75-80
    • /
    • 2003
  • When a bright astronomical object (source) is gravitationally lensed by a foreground mass (lens), its image appears to be located at different positions. The lens equation describes the relations between the locations of the lens, source, and images. The lens equation used for the description of the lensing behavior caused by a lens system composed of multiple masses has a form with a linear combination of the individual single lens equations. In this paper, we examine the validity of the linear nature of the multi-lens equation based on the general relativistic point of view.

THREE-DIMENSIONAL CRYSTALLIZING ${\pi}$-BONDING , ${\pi}$-FAR INFRARED RAYS AND NEW SPACE ENERGY RESOURCE

  • Oh, Hung-Kuk
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1996년도 춘계학술발표회 초록집
    • /
    • pp.73-87
    • /
    • 1996
  • The outer-most electrons of metal atoms and the remining valence electrons of any molecular atoms make three dimensional crystallizing $\pi$-bondings. The electrons on the $\pi$-bonding orbital rotate clockwise or counter-clockwise and they then make electro-magnetic waves between atoms on the orbital because electron move between plus charged ions. The three dimensional crystallizing $\pi$-bonding orbitals are quantum-mechanically modeled by a cyclic Kronig-Penny Model and energy band structures are analyzed with their potential barrier thickness. The waves generated between plus charged ions are the particular $\pi$-far infrared rays, which have dual properties between material and electro-magnetic waves and can be measured not by modern electro-magnetic tester but biosensor such as finger's force tester. Because the $\pi$-rays can be modulated with electro-magnetic waves it can be applied for harmful electro-magnetic wave killers. Because the $\pi$-rays make new three dimensional crystallizing $\pi$-bonding orbitals in the material the food and drink can be transformed into a helpful physical constitutional property for human health. Distinction between crystalline and amorphous metals is possible because very strong crystalline $\pi$-bonding orbitals can not easily be transformed into another. The $\pi$-rays can also be applied for biofunctional diagnostics and therapy. Gravitational field is one of the electro-magnetic fields. And also magnetic field and gravitational force field make charge's movement. ($\times$ = q, : magnetic field, : force field, q: plus charge, : velocity field)

  • PDF

Search for new magnetar candidates in Galactic plane.

  • Park, Woochan;An, Hongjun
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.55.3-55.3
    • /
    • 2018
  • Magnetars are neutron stars powered by strong magnetic field (B > $10^{14}G$). Their spin period is in the range of 2 - 12s. The magnetic stress in the star may distort the crust (observed as outbursts), so magnetars (especially in outbursts) may emit gravitational waves. There are 29 magnetars known (potential gravitational waves sources), and increasing the number will increase the chance of detecting low-frequency gravitational waves. In addition, magnetars can be used for studying matter under extreme condition. In this study, we searched for more magnetars using extensive Chandra archival data and found 11 candidates. Due to the limited sensitivity of Chandra, form identification cannot be made, and more sensitivity X-ray data are needed.

  • PDF

MONTE-CARLO SIMULATION OF NEUTRON STAR ORBITS IN THE GALAXY

  • TAANI, ALI
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.583-584
    • /
    • 2015
  • In this paper, the numerical results concerning different orbits of a 3D axisymmetric non-rotating galactic potential are presented. We use $Paczy{\acute{n}}ski^{\prime}s$ gravitational potential with different birth velocity distributions for the isolated old Neutron Star (NS) population. We note some smooth non-constant segments corresponding to regular orbits as well as the characterization of their chaoticity. This is strongly related to the effect of different kick velocities due to supernovae mass-loss and natal kicks to the newly-formed NS. We further confirm that the dynamical motion of the isolated old NSs in the gravitational field becomes obvious, with some significant diffraction in the symmetry of their orbital characteristics.