• Title/Summary/Keyword: Gravimetric Flowmeter Calibrator

Search Result 7, Processing Time 0.014 seconds

A Study on the Measurement Uncertainty of Flowmeter Calibrator (유량계 교정장치의 측정불확도에 관한 연구)

  • Im, Gi-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.561-571
    • /
    • 2001
  • The standard uncertainty of flowrate measurement is obtained by combining that of independent variables. Gravimetric and volumetric method were applied to determine the flowrate and the standard uncertainties of flowrate measurement by both methods were evaluated in accordance with the procedure recommended by International Organization for Standardization. The combined standard uncertainties of determining the flowrate were estimated from the sensitivity coefficient and the standard uncertainty of independent variables. For practical application, the methods for evaluating and expressing uncertainty in flow measurement were discussed. It was found that the uncertainties of the weighing and time measurement in gravimetric method, the volume and time measurement in volumetric method have dominant influence on that of flowrate measurement. With the quantitative analysis of the sensitivity coefficient, the contribution of the each variable uncertainty to the combined standard uncertainty of flowrate measurement is shown clearly.

Flow Range Extension of Light Oil Flowmeter Standard System with Build-Up Technique (Build-Up 기법을 이용한 경질유 표준장치의 측정범위 확장)

  • Lim, Ki-Won;Choi, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1139-1146
    • /
    • 2006
  • Light Oil Flow Standard System(LOFSS) in Korea Research Institute of Standards and Science(KRISS) was designed for oil flowmeter calibration. In order to extend the flow range from 120 $m^3/h$ to 200 $m^3/h$, the build-up technique was applied with two positive displacement flowmeters as master flowmeter. The master flowmeters were calibrated against with LOFSS, which has 0.04 % uncertainty of flow quantity determination, then the test flowmeter is calibrated against two master flowmeters. For uncertainty analysis, the repeatability of master flowmeters, the variation of the fluid density and the pipe volume due to temperature change were scrutinized. The contribution of each uncertainty factors to the calibrator and the correlation of each factors were discussed. For investigating the feasibility of uncertainty analysis, a turbine flowmeter as a transfer package was tested with LOFSS and two reference flowmeter. The hypothesis test for both results was coincide with a 95 % significant level. This means that the uncertainty analysis procedure of the calibrator is reasonable and the extension of flow range with master meters was carry out successfully.

A Study on the Uncertainty Estimation of Flowmeter Calibrator with Two Master Flowmeters (2개의 기준유량계를 이용한 유량계 교정장치의 측정불확도 평가에 관한 연구)

  • Choi Jong Oh;Lee Woan Kyu;Lim Ki Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1219-1230
    • /
    • 2004
  • Comparing to the gravimetric and volumetric method, the flowmeter calibration based on the master meter method is relatively economical and convenient, especially for high flowrate. The uncertainty of flow quantity and flowrate using the master meter method was evaluated according to the GUM (Guide to the Expression of Uncertainty in Measurement). In order to apply for the wider flow range, two master meters (electromagnetic flow meter) were employed as reference flowmeters. The uncertainty of the master meter was obtained by combining the statistical variation of the repeated measurements and the variation of fluid density and pipe material due to temperature and pressure changes were scrutinized. for a practical application, the uncertainty of calibrator, whose measuring capacity of 1000 ㎥/h obtained by employing two 500 ㎥/h electromagnetic How meters, was evaluated. The uncertainty budget shows the quantitative contribution of each uncertainty component to the overall uncertainty of the calibrator. As a result, it was found that the dominant uncertainties were from the master meter, which was evaluated statistically, and from the process of least squares fitting. On the contrary, the uncertainties arising from the variation of the fluid density and the pipe volume due to the temperature and pressure were negligible.

Development of Small Size Coriolis Mass Flowmeter (소형 코리올리 질량 유량계의 개발)

  • Lim Ki-Won;Ji Jueng-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.497-504
    • /
    • 2006
  • A Coriolis mass flowmeter(CMF), which has U-Shaped unique measurins tube was developed fo. direct mass flow measurement. In order to convert the time difference between two measuring tubes motion into mass flowrate and flow quantity, a signal processing circuit, as a part of CMF, was also developed. The CMF was designed as the 15 mm nominal diameter of pipe connection and the 8 mm stainless steel(sus 316) pipe was used for measuring tube. To maximize the flow signal(time difference) from the measuring tubes, the natural frequency of measuring tube was adjusted as 220 Hz, which is same as the frequency of exciter. The maximum displacement at the end of the measuring tube was measured as 0.05 mm and the maximum time difference between two measuring tubes was observed as $20{\mu}s$, which was proper for discrimination and measuring range of CMF. The developed CMF was tested against the gravimetric flowmeter calibrator in the range of 3 kg/min and 30 kg/min. The results showed that the CMF has good linearity and repeatability in the tested flow range. Large size of CMF base on the current study experience will be developed.

An Experimental Study on the Influential Factors of Flow Measurement with Coriolis Mass Flowmeter (코리올리스 질량유량계의 유량측정에 영향을 미치는 인자에 관한 실험적 연구)

  • Lim, Ki-Won;Lee, Woan-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1699-1707
    • /
    • 2003
  • Coriolis mass flowmeter(CMF), which can measure the mass flow directly, is getting rapid attention for the industrial and custody transfer purpose. In order to study the characteristics and the applicability of CMF, it is tested with the national flow standard system. Two types of sensing tube, U-type and straight type, are employed in the test. Water, spindle oil and viscosity Standard Reference Material whose viscosities are 1, 20 and, 67 $\textrm{mm}^2$/s, respectively, are studied. It is shown that the linearity of CMF is getting deteriorated as the fluid viscosity increases, which is due to the zero drift and the relaxation time of the fluid. To test its applicability in the case of high pressured gas, it is calibrated using compressed air, It shows 1∼l.6 % deviations compared to the calibration results using water. It concludes that the fluid velocity in CMF should be lower than the sonic velocity. In addition, the effects of the vibration from the pipeline and pump on CMF as well as the long term stability are studied.

A Study on the Measurement Uncertainty of Pipe Prover (파이프 프루버의 측정불확도에 관한 연구)

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1388-1398
    • /
    • 2000
  • A pipe prover is a flowmeter calibrator used in flow measurement field. Gravimetric and volumetric methods were applied to determine the basic volume of the pipe prover. Uncertainty of its basic volume measurement was evaluated in accordance with the procedure recommended by International Organization for Standardization. The combined standard uncertainty of determining the basic volume was estimated from the sensitivity coefficient and the standard uncertainty of independent variables. It was found that the uncertainties of the weighing and volume measurements have dominant influence on that of the basic volume determination. With the quantitative analysis of the sensitivity coefficient, the contribution of the each variable uncertainty to the combined standard uncertainty of the basic volume is shown clearly.

Flow Signal Characteristics of Small Scale Electromagnetic Flowmeter in Low Conductivity Fluid Measurement (저전도율 유체 측정에서 소형 전자기유량계의 신호 특성)

  • Lim, Ki Won;Jung, Sung Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.613-620
    • /
    • 2016
  • In order to scrutinize the fluid conductivity effects on the electromagnetic flowmeter(EMF) characteristics, a small scale EMF was designed and fabricated. The measuring tube has a $3mm{\times}4mm$ rectangular cross-section, 9 mm length, and a $2mm{\times}3mm$ plate electrode and a ${\Phi}1.5mm$ point electrode. The design parameters, such as the magnetizing frequency and the number of coil turns, and the diameter were optimized. The EMF was tested with a gravimetric calibrator and showed good linearity in the range of 0 to $1.17{\times}10^{-5}m^3/s$. The fluid conductivity was varied between 3 and $11{\mu}S/cm$, and the magnitude of the flow signal was proportional to the fluid conductivity and the wetted area of the electrode. The design information and the test results provide flow measurement techniques for very low flowrate.