• Title/Summary/Keyword: Gravel-bed River

Search Result 57, Processing Time 0.026 seconds

EFFECTS OF RIVER DISCHARGE ON GROWTH OF PERIPHYTON IN SAND RIVER

  • Toda Yuji;Tsujimoto Tetsuro;Fujimori Noriomi
    • Water Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.113-122
    • /
    • 2005
  • Periphyton is known to be one of major primary producers for river ecosystem. While the growth of periphyton usually observed on the stone surface in gravel river, the large growth of periphyton is sometimes seen even in sand river with relatively small river discharge. In the present study, field observations and numerical simulations were performed to investigate the growth of periphyton in sand river. In the field observation, the growth of periphyton on fixed sand bed was measured weekly. The results of the field observations show that the large growth of periphyton occurs in sand river until the bed material sands have not moved. An integrated numerical simulation model is presented to describe the growth of periphyton at observed river reach, and a series of numerical simulations were performed to study the effect of river discharge on growth of periphyton in the sand river. The results of the numerical simulations show that the net primary production of periphyton decreases with the river discharge. These results suggest that the reduction of river discharge at ordinary water stage strongly affects the primary productivity of periphyton even in sand river.

  • PDF

A Study of CFRD using a Gravel Fill (하상사력재를 이용한 CFRD의 연구)

  • Jeong, Chan-Kyun;Noh, Tae-Gil;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.842-853
    • /
    • 2008
  • In the construction of dam, the key factor which decides the type of dam is security of materials resource. Because of the large scale earth work, the ability to supply the materials is essential part about economical efficiency. The research is the case study about controlling the plan to secure the material resources in the design of Buhang multipurpose dam. In case of Buhang multipurpose dam, at that time of basic design, it was planned to use a rock fill material. From the detail investigation about the river bed accumulative layer widely spread on the submerged district on the basic design, the research is accomplished to replace rock material with gravel material. After the investigation of whole reserves of gravel material, estimation of conformity as dam construction material from analysis of grain size distribution, the case study of oversea construction, and the material property comparison between rock fill material and gravel fill material, it is verified th possibility of using the gravel fill. Thereafter, the analysis of dam stability using a gravel fill material is accomplished. Finally, A gravel fill material can be used as the main construction material of CFRD, therefore the efficiency of resource recycling in the submerged area is maximized, and the established plan is more advantageous to stability, constructibility, environmentibility than the case of using a rock fill.

  • PDF

Analysis of Roughness Coefficient in Gravel-bed Rivers (자갈하천의 조도계수 특성 분석)

  • Lee, Chan Joo;Kim, Yong Jeon;Kim, Ji Sung;Kim, Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.149-157
    • /
    • 2010
  • The purpose of this study is to analyse characteristics of roughness coefficient based on bed-material size of the gravel-bed rivers using field data obtained from nine domestic rivers. Roughness coefficient is calculated using Manning's equation. Roughness coefficient decreases with increasing discharge, but above a certain discharge, it tends to be constant. Similarly, roughness coefficient shows reverse relationship with relative smoothness (R/D). The regression equation adopting theoretically derived value of 2.03 as log coefficient indicates close similarity with the previous equation proposed by Limerinos (1970). Roughness coefficient values converged above certain discharges lie in the range from 0.024 to 0.045. From them, empirical equations based only on bed-material size are derived and compared with those suggested by the previous studies.

Differences between Sand and Gravel Bars of Streams in Patterns of Vegetation Succession

  • Lee, Chang-Seok;Cho, Yong-Chan;Shin, Hyun-Cheol;Park, Sung-Ae
    • Journal of Ecology and Environment
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • We analyzed the factors driving succession and the structure, and dynamics of vegetation on sand and gravel bars in order to clarify the differences in vegetation succession in rivers with different river bed substrates. Woody plant communities (dominated by Salix), perennial herb communities (dominated by Miscanthus), and annual plant communities (dominated by Persicaria) appeared in that order from upstream to downstream on the sandbar. The results of DCA ordination based on vegetation data reflected a successional trend. This result suggests that sandbars grow in a downstream direction. Various vegetation types different in successional stage, such as grassland, young stands of Korean red pine (Pinus densiflora), two-layered stands of young and mature pines, and mature pine stands also occurred on gravel bars, but the vegetation in earlier successional stage was established upstream, which is the opposite to the direction found on sandbars. Those results demonstrate that the dynamics of the bed load itself could be a factor affecting vegetation succession in rivers. In fact, sands suspended by running water were transported downstream over the vegetated area of sand bar and thereby created new areas of sandbar on the downstream end of the sandbar. Meanwhile, gravel, which is heavy and thereby is shifted by strong water currents, accumulated on the upstream end of the vegetated area, and thus created new areas of gravel bar in that direction. These results showed that allogenic processes drive vegetation succession on sand and gravel bars in streams and rivers.

The Prediction and Analysis of Bed Changes Characteristics in the Seomjin River Downstream (섬진강 하류의 하상변동 특성 분석 및 예측)

  • Ceon, Ir-Kweon;Kim, Min-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.115-121
    • /
    • 2009
  • It is to use effectively for stream channel and watershed management as the prediction and the analysis of bed changes characteristics in the Seomjin river downstream. The necessary data (section, bed composition material, pivot point water elevation, coefficient of roughness) with regard to analysis of the bed changes characteristics were based upon the survey data and analysis results in the Seomjin river maintenance basic plan. The prediction of bed changes was also completed with HEC-6 model. The study results were summarized as follows: The main factor of bed changes in the Seomjin river downstream can be decided by extreme extraction of bed aggregate rather than the change of hydrological data. According to the analysis of bed stability based on the relation between friction velocity and representative grain size, and the relation between dimensionless tractive force and representative grain size, the Seomjin river downstream appears to be increased overall. The bed composition material in the stream channel of the Seomjin river of 2003 year shows higher composition rate of gravel and lower composition rate of sand as compared to those of 1989 year. According to result that the prediction of bed changes, it is estimated that the bed will be risen approximately 1.5 m to the place up to 9 km from the estuary, have been repetitively risen and fallen up to 1 m to the place between $9{\sim}21\;km$ section, and fallen about 0.5m to the place between $22{\sim}25\;km$ section. As a result, the bed of the Seomjin river downstream can be decided to be risen gradually. However, since the prediction of this study is based on the assumption that there will be no forced aggregate picking, the bed changes can be much greater than expected when there is a massive aggregate picking as it had happened before.

An application of image processing technique for bed materials analysis in gravel bed stream: focusing Namgang (자갈하천의 하상재료분석을 위한 화상해석법 적용: 남강을 중심으로)

  • Kim, Ki Heung;Jung, Hea Reyn
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.655-664
    • /
    • 2018
  • The riverbed material survey is to investigate the particle size distribution, specific gravity, porosity, etc. as basic data necessary for river channel plan such as calculation of sediment transport and change of river bed. In principle, the survey spots are 1 km interval in the longitudinal direction of the river and 3 points or more in the 1 cross section. Therefore, depending on longitudinal length of the river to be investigated, the number of surveyed sites is very large, and the time and cost for the investigation are correspondingly required. This study is to compare the particle size analysis method with the volumetric method and the image analysis method in work efficiency and cost and to examine the applicability of the image analysis method. It was confirmed that the diameter of the equivalent circle converted by the image analysis method can be applied to the analysis of bed material particle size. In the gravel stream with a particle size of less than 10 cm and a large shape factor, the analytical result of the bed material by the image analysis method is accurate. However, when the shape factor decreases as the particle size increases, the error increases. In addition, analysis results of the work efficiency and cost of the volume method and the image analysis method showed a reduction of about 80%.

Hanja word processing on Hangul disyllabic characteristics (한글의 음절특성에 따른 한자어 정보처리)

  • 이재욱;남기춘
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.125-130
    • /
    • 2002
  • 우리의 언어생활을 비추어 볼 때 한자어 정보처리는 많은 연구가 이루어야 함에도 불구하고 고유어 언구에 비해 소흘해 다루어져 왔다. 본 연구는 단일 한자어를 구성하는 각 음절이 단어의 재인에 어떤 영향을 미치는지 점화과제를 통하여 알아보았다. 본 실험은 기존의 한자어 연구에 빈도특성과 고유어와 외래어의 글자특성까지 고려하여 종합적으로 살펴보았다. 먼저 실험1의 어휘판단관제에서는 고유어와 한자어의 양상이 비슷하며 외래어는 다른 처리를 하는 것으로 드러났다. 고유어와 한자어는 빈도에 따라 영향을 받지만 외래어는 빈도의 영향에 변함없이 일정하게 나타났다. 이런 결과는 한국인은 고유어와 한자어를 동일한 양상으로 처리하며 이런 이유는 외래어의 한국어와는 다른 음운규칙이나 음절규칙의 영향으로 해석할 수 있겠다. 실험 2에서는 한자어 형태소와 의미적으로 유사한 조건(강도-강력)과 철자적 유사 조건(강도-강변), 고유어 유사 조건(강도-강정)조건을 점화과제를 이용하여 어휘판단을 하게 하였다. 실험 결과 모든 조건이 통제조건에 비하여 빠르게 나왔다. 그리고 의미적 유사 조건이 촉진적 점화효과를 일으키고, 철자적 유사조건은 억제 효과를 일으켰으며 고유어는 특이하게도 판단시간이 빠르게 나와 한자어와는 다른 처리과정이 있음을 보여주고 있다. 이런 결과는 지연조건에서도 동일하게 일어나고 있다. 이런 결과는 한자어는 어휘접근 이후에도 실험의 과제 특성상 한자어 형태소는 단어 수준 아래 위치하기는 힘든 반면, 고유어는 단어 수준 아래에 존재한다고 할 수 있다. 결국 한자어와 고유어는 기본적으로 외래어와 다른 처리를 보이면 한자어와 고유어 내에서도 한자어는 단어접근 전에 의미접근의 단계를 거쳐야 하지만 고유어는 각 음절이 형태소가 아니기 때문에 바로 어휘에 접근하는 것이라고 할 수 있겠다.ulic geometry and sediment transport has been applied to: (1) gravel-bed transport measurements in a cobble-bed stream at Little Granite Creek, Wyoming; (2) sand and gravel transport by size fraction in the sharp meander bends of Fall River, Colorado; (3) changes in sand dune geometry and resistance to flow during major floods of the Rhine River in the Netherlands; (4) changes in hydraulic geometry of the Rio Grande downstream of Cochiti Dam, New Mexico; and (5) analysis of the influence of water temperature and the Coriolis force on flow velocity and sediment transport of the Lower Mississippi River in Louisiana. Recent developments also include two textbooks on "Erosion and Sedimentation" and "River Mechanics" by the author and state-of-the-art papers in the ASCE Journal of Hydraulic Engineering.rk on is diversified, the importance of skills are diversified in each field of jobs.

  • PDF

Potential of River Bottom and Bank Erosion for River Restoration after Dam Slit in the Mountain Stream

  • Kang, Ji-Hyun;So, Kazama
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.46-46
    • /
    • 2011
  • Severe sediment erosion during floods occur disaster and economic losses, but general sediment erosion is basic mechanism to move sediment from upstream to downstream river. In addition, it is important process to change river form. Check dam, which is constructed in mountain stream, play a vital role such as control of sudden debris flow, but it has negative aspects to river ecosystem. Now a day, check dam of open type is an alternative plan to recover river biological diversity and ecosystem through sediment transport while maintaining the function of disaster control. The purpose of this paper is to verify sediment erosion progress of river bottom and bank as first step for river restoration after dam slit by cross-sectional shear stress and critical shear stress. Study area is upstream reach of slit check dam in mountain stream, named Wasada, in Japan. The check dam was slit with two passages in August, 2010. The transects were surveyed for four upstream cross-sections, 7.4 m, 34 m, 86 m, and 150 m distance from dam in October 2010. Sediment size was surveyed at river bottom and bank. Sediment of cobble size was found at the wetted bottom, and small size particles of sand to medium gravel composed river bank. Discharge was $2.5\;m^3/s$ and bottom slope was 0.027 m/m. Excess shear stress (${\tau}_{ex}$) was calculated for hydraulic erosion by subtracting the values of critical shear stress (${\tau}_{c}$) from the value of shear stress (${\tau}$) at river bottom and bank (${\tau}_{ex}=\tau-{\tau}_c$). Shear stress of river bottom (${\tau}_{bottom}$) was calculated using the cross-sectional shear stress, and bank shear stress (${\tau}_{bank}$) was calculated from the method of Flintham and Carling (1988). $${\tau}_{bank}={\tau}^*SF_{bank}((B+P_{bed})/(2^*P_{bank}))$$ where $SF_{bank}=1.77(P_{bed}/p_{bank}+1.5)^{-1.4}$, B is the water surface width, $P_{bed}$ and $P_{bank}$ are wetted parameter of the bed and bank. Estimated values for ${\tau}_{bottom}$ for a flow of $2.5\;m^3/s$ were lower as 25.0 (7.5 m cross-section), 25.7 (34 m), 21.3 (86 m) and 19.8 (150 m), in N/$m^2$, than critical shear stress (${\tau}_c=62.1\;N/m^2$) with cobble of 64 mm. The values were insufficient to erode cobble sediment. In contrast, even if the values of ${\tau}_{bank}$ were lower than the values for ${\tau}_{bottom}$ as 18.7 (7.5 m), 19.3 (34 m), 16.1 (86 m) and 14.7 (150 m), in N/$m^2$, excess shear stresses were calculated at the three cross-sections of 7.5 m, 34 m, and 86 m distances compare with ${\tau}_c$ is 15.5 N/$m^2$ of 16mm gravel. Bank shear stresses were sufficient for erosion of the medium gravel to sand. Therefore there is potential to erode lateral bank than downward erosion in a flow of $2.5\;m^3/s$. Undercutting of the wetted bank can causes bank scour or collapse, therefore this channel has potential to become wider at the same time. This research is about a potential of sediment erosion, and the result could not verify with real data. Therefore it need next step for verification. In addition an erosion mechanism for river restoration is not simple because discharge distribution is variable by snow-melting or rainy season, and a function for disaster control will recover by big precipitation event. Therefore it needs to consider the relationship between continuous discharge change and sediment erosion.

  • PDF

Determination of Equivalent Roughness for Estimating Flow Resistance in Stabled Gravel-Bed River: II. Review of Model Applicability

  • Park, Sang-Woo;Lee, Sin-Jae;Jang, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1211-1220
    • /
    • 2008
  • In this study, we estimated, the equivalent roughness using an estimation model, which considered grain distribution on the bed and the protrusion height of the grains. We also reviewed the appropriateness of the estimated equivalent roughness at the Goksung and Gurey station in the Seomjin River. To review the appropriateness of this model, we presented the water level-discharge relation curve applying the equivalent roughness to the flow model and compared and reviewed it to observed data. Also, we compared and reviewed the observed data by estimating the Manning coefficient n, the Chezy coefficient C, and the Darcy-Weisbach friction coefficient f by the equivalent roughness. The calculation results of the RMSE showed within 5% error range in comparison with observed value. Therefore the estimated equivalent roughness values by the model could be proved appropriate.

Research on the Ground Water Developement in the Region of Choong Nam Province (충남지역의 지하수개발에 관한 조사)

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1827-1831
    • /
    • 1969
  • Resulties of research on the capacity of ground water of 994 concrete-pipe-wells and 97 infiltration-gallerys in ground-water-developement-works region executed from March to Julyin 1969, in Choong Chung Nam Do, and research on the quality of ground water for 88 wells for home-use around of River Geum Area, are as fellows: (1) Thickness of aquifer is no more than 2.85m averagely even at river-overflowed plain, alluvial plain and valley plain area that are estimated to contain ground water mostly. And so, it is guessed that ground water capacity is not much especially. (2) Soil of aquifer of the above area is sand or gravel and it is estimated to be good for ground water developement and its mean permeability coefficient is bout $2.5{\times}10^{-3}$(m/sec), and its porosity is about 33.9%. (3) The quality of ground water is good for irrigation water exception of delta plain area. Warm water plan is to need for irrigation water when water temperature is less than 19 degrees below zero. (4) Prospect of ground water developement, judging from quality and quantity, expects to lay infiltration gallery under the ground at river bed in order to utilize under-flow-water of river bed, river-overflowed plain, alluvial plain and valley plain that ground level is less than 50m. (5) Collectable water volume of under-flow-water of river bed is about 450 to $750m^3/day$ to be able to irrigate 3ha to 5ha of the cultivated land in case that infiltration gallery length is 50m and its depth is about 5m. (6) Collectable water volume at river-overflowed plain, alluvial plain and valley plain area, is estimated $150m^3/day$ to be able to irrigated 1ha of the cultivated land.

  • PDF