• Title/Summary/Keyword: Gravel Mining

Search Result 14, Processing Time 0.023 seconds

An Analysis of Streambed Changes Downstream of Daecheong Dam

  • Seo, Hyeong-Deok;Jeong, Sang-Man;Kim, Lee-Hyung;Choi, Kyu-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.103-108
    • /
    • 2008
  • Riverbed change is greatly influenced by artificial factors such as dam construction, gravel collection, and river improvement. This study simulated a long-term bed change based on the GSTARS3 model using actual data from the area downstream of the Geum River Daecheong Dam and compared the estimation with a section of the actual measurement. As a result, it was found that the section of the actual measurement was far lower than the result of the simulation in terms of long-term bed change. While the area downstream of Daecheong Dam displayed approximately an average of 2.29 m of streambed degradation on average while the upper stream area showed approximately 0.63 m of bed degradation over 24 years. In the simulation of the area downstream of Daecheong Dam based on the GSTARS3 model, similar bed degradation was observed. However, a great difference was detected between the result and the actual measurement. According to the cause analysis, the riverbed in the area downstream of Daecheong Dam has continuously degraded due to the dam construction and mass collection of gravel. The mass collection of gravel was the main cause of riverbed change. It was found that about 76% of all riverbed degradation was caused by the mass collection of gravel.

Migration of fine granular materials into overlying layers using a modified large-scale triaxial system

  • Tan Manh Do;Jan Laue;Hans Mattsson;Qi Jia
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.359-370
    • /
    • 2024
  • The primary goal of this study is to evaluate the migration of fine granular materials into overlying layers under cyclic loading using a modified large-scale triaxial system as a physical model test. Samples prepared for the modified large-scale triaxial system comprised a 60 mm thick gravel layer overlying a 120 mm thick subgrade layer, which could be either tailings or railway sand. A quantitative analysis of the migration of fine granular materials was based on the mass percentage and grain size of migrated materials collected in the gravel. In addition, the cyclic characteristics, i.e., accumulated axial strain and excess pore water pressure, were evaluated. As a result, the total migration rate of the railway sand sample was found to be small. However, the total migration rate of the sample containing tailings in the subgrade layer was much higher than that of the railway sand sample. In addition, the migration analysis revealed that finer tailings particles tended to be migrated into the upper gravel layer easier than coarser tailings particles under cyclic loading. This could be involved in significant increases in excess pore water pressure at the last cycles of the physical model test.

Experimental Study on the Adjustment Processes of Minning Pit in the Dredged Channels (준설하천의 웅덩이 적응에 관한 실험적 연구)

  • Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.657-666
    • /
    • 2010
  • The adjustment processes of mining pits in the disturbed channels by sand or gravel mining were investigated by laboratory experiments in this study. The pit migrated with speed when the river bed was steep. The pit migrated slow and steady when the pit was filling with sand, but the pit migrated with speed after the filling processes was finished. The submerged angle of repose in the pit was nearly constant during the pit was filling. The pit was filled with sand with speed as the channel slope was increased. It took time for the pit to be filled with sand as the pit dimension was increased. This meant that the disturbed channels by sand or gravel mining to adjust the new environment was dependent on the slope of the channels and the dimension of the pits. The dimensionless pit length was short and the dimensionless pit depth was shallow as the time was increased. The dimensionless pit depth was shallow, but the dimensionless pit migration speed was increased as the dimensionless shear velocity and the migration speed of the pit were increased. The dimensionless pit depth was increased with the dimensionless bar migration speed. The shape of the pit was deformed and migrated downstream in accordance with the location and shape of the biased bar front which was developed upstream.

Experimental Study on the Adjustment Processes of a Series of Mining Pits in the Dredged Channels (준설하천에서 직렬로 배열된 웅덩이의 적응에 관한 실험적 연구)

  • Jang, Chang-Lae;Lee, Gi-Ha
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.385-395
    • /
    • 2011
  • The adjustment processes and responses of a series of mining pits by sand or gravel mining were investigated by laboratory experiments. The filling processes of the two pits were affected by the bars developed in the upstream of the channel. However, the bars were not developed and the bed was degradated in the downstream of the pits due to little sediment flow, which was trapped in the pits. The submerged angle of repose in the pits was nearly constant when the pits were being filled. After the filling processes of the pits were finished, the pit was speedily filled with sediment, and the bed was aggradated and migrated with speed. However, the angle of repose decreased. As the distance between the upstream pit and the downstream pit increased, the bed of the pit downstream was tailcutted and degradated. The migration speed of the pit decreased. However, the dimensionless pit depth increased as the distance between the pits increased. The dimensionless pit depth increased with time.

Numerical Modelling of the Adjustment Processes of Minning Pit in the Dredged Channels (수치모의를 이용한 준설하천의 웅덩이 적응에 관한 연구)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.921-932
    • /
    • 2010
  • In this study, the adjustment processes of the disturbed channels by sand or gravel mining were investigated by a two dimensional numerical model in the generalized coordinate system. As a numerical scheme, the CIP (cubic interpolated pseudoparticle method) method was used to calculate the advection term in the flow field and central difference method was used to the diffusion term in it. The pit of the channel was partially filled with sediment at the toe of the pit upstream. As time increased, the headcut erosion upstream in the pit was decreased due to the sediment inflow. The almost inflow sediment upstream was trapped into the pit and the sediment deposit wedge migrated downstream in the pit with the steep submerged angle of repose. The numerical model was reproduced well the evolution processes of the channel. The mining pit migrated with speed as the channel was steep, and the numerical results were in overall agreement with the experimental results.

Uptake and Accumulation of Arsenate on Lettuce (Lactuca sativa L.) Grown in Soils Mixed with Various Rates of Arsenopyrite Gravel (유비철석 입자 혼합 토양내 상추(Lactuca sativa L.)의 비소이온 흡수와 축적)

  • Shim, Ho-Young;Lee, Kyo-Suk;Lee, Dong-Sung;Jeon, Dae-Sung;Shin, Ji-Su;Kim, Soo-Bin;Cho, Jin-Woong;Chung, Doug-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.532-538
    • /
    • 2014
  • Arsenic (As) is nonessential element toxic to plants. In Korea little is not only known about the extent of actual anthropogenic sources and inputs of arsenic to the agricultural land which plays a active role as a sink, but also systematic research on arsenic as an toxic element entering the food chain via the soil-plant pathway has not been investigated in the fields and greenhouses besides in few places of abandoned mining sites. Therefore, it is important to focus on the effect of As-contaminated soils on As uptake and biomass production of lettuce plants. In this study, As concentrations in the soil and accumulation of As in lettuce transferred by As uptake from soils were investigated. To do this, soil which was mixed with various rates of arsenopyrite gravels containing arsenic from 0 to 100% was packed into a round plastic pot. Then, 10 days old vegetable crops of chinese cabbage and lettuce after germination were transplanted into a pot. Growth of lettuce was observed for four weeks with one week interval. All experiments were done by triplicate. The results showed that the growth rates for number of leaves, width and length of the crop plants were retarded with increasing amount of gravel mixed due to increasing bioavailable amount of arsenate with increasing rate of gravel in soils. With these results, we conclude that the bioavailable amount of arsenate can influence the growth of lettuce.

Recolonization of benthic macroinvertebrates after anthropogenic disturbance in natural streams, South Korea

  • Chun, Seung-Phil;Chon, Seung-Hoon;Lee, Seung-Oh;Im, Jang-Hyuk;Lee, Woo-Kyun;Kim, Myoung-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.2
    • /
    • pp.228-235
    • /
    • 2015
  • Stream ecosystems are closely related to many human activities. Therefore, streams are affected by anthropogenic disturbances such as riverine development and gravel-mining as well as deterioration of water quality. The goal of this study was to elucidate the recolonization process of the macroinvertebrate community after a small-scale anthropogenic disturbance. Field studies were conducted at three sites in a natural stream. The number of recolonizing species tended to increase slightly over time, exceeding the total species number of the control. Ephemeroptera contributed the most to shaping the recolonizing pattern of the entire community. From the result of changes in dominant species, the early recolonizers of each site were the species that showed more frequent occurrence particulary at each sites. But the late recolonizers are Chironomidae at all the sites commonly. This result implies that the actual differences exist among the recolonizing trends of each benthic macroinvertebrate taxon. Collector-gatherers and scrapers comprised about 70% of the recolonizing species. These results indicate that the recolonizing process of an aquatic community after an artificial disturbance depends on the environmental conditions(particularly substratum composition or organic pollution) of the habitat.

Prediction of total sediment load: A case study of Wadi Arbaat in eastern Sudan

  • Aldrees, Ali;Bakheit, Abubakr Taha;Assilzadeh, Hamid
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.781-796
    • /
    • 2020
  • Prediction of total sediment load is essential in an extensive range of problems such as the design of the dead volume of dams, design of stable channels, sediment transport in the rivers, calculation of bridge piers degradation, prediction of sand and gravel mining effects on river-bed equilibrium, determination of the environmental impacts and dredging necessities. This paper is aimed to investigate and predict the total sediment load of the Wadi Arbaat in Eastern Sudan. The study was estimated the sediment load by separate total sediment load into bedload and Suspended Load (SL), independently. Although the sediment records are not sufficient to construct the discharge-sediment yield relationship and Sediment Rating Curve (SRC), the total sediment loads were predicted based on the discharge and Suspended Sediment Concentration (SSC). The turbidity data NTU in water quality has been used for prediction of the SSC in the estimation of suspended Sediment Yield (SY) transport of Wadi Arbaat. The sediment curves can be used for the estimation of the suspended SYs from the watershed area. The amount of information available for Khor Arbaat case study on sediment is poor data. However, the total sediment load is essential for the optimal control of the sediment transport on Khor Arbaat sediment and the protection of the dams on the upper gate area. The results show that the proposed model is found to be considered adequate to predict the total sediment load.

Long-Term Compressive Strength and Durability Properties of "CSG" Materials by Freezing-Thawing Test (동결융해시험에 의한 "CSG" 재료의 장기강도 및 내구 특성)

  • Jin, Guangri;Kim, Kiyoung;Moon, Hongduk;Quan, Hechun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.35-43
    • /
    • 2016
  • With the development of construction technology, constructions of dam and levee (dike) as well as the environmental problems are becoming issues. Recently, many countries have tried to develop and used CSG (Cemented Sand and Gravel), which needs fewer requirements than others in aggregates, constructability and ground condition during the dam construction. Mixing up with small amount of cement, CSG is able to increase the strength and proceed accelerated construction without artificial gradation adjustment of riverbed aggregate and crushed rock on construction site. Thus, CSG can minimize environmental damage resulted from quarries mining and reduce cost of construction. Unlike heat of hydration condition that regular concrete usually met, CSG exposes to repeated dry-wet and freezing and thawing environment. Thus, consider the importance of structure of dam or levee, intensive study on the durability of CSG is needed. In this study, freezing and thawing experiment was carried out to evaluate the durability of CSG. In results, the durability factor of CSG is 30~40 or >40 when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. The unconfined compressive strength is reduced to 30~50% or 40~70% when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. Taken together, the strength and durability of CSG is reliable when the amount of cement is over $0.8kN/m^3$.

Evaluation of Groundwater Flow by Gravel-Filling and Temporary Drainage in Groundwater-saturated Limestone Mine Cavities (지하수 포화 석회석 채굴공동에서의 골재 충전 및 임시배수시 발생하는 지하수 유동 평가)

  • Choi, Woo-Seok;Kang, Byung-Chun;Kim, Eun-Sup;Shin, Dong-Choon
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.205-216
    • /
    • 2017
  • Fluctuations in groundwater level are the major cause of ground subsidence in the abandoned limestone mine. In this study, evaluation of groundwater flow under three different cases of natural condition, aggregate-filling, temporary drainage in groundwater-saturated limestone mine cavities was executed by 3-dimensional analysis. In the case of aggregate-filling, although the water level both in the upper ground of mine cavities and an agricultural watershed was elevated, it was lower than the water level fluctuation of an agricultural water use and rainfall and the flow rate was similar to the flow rate of natural condition. In the case of temporary drainage, as the water level in the upper ground of mine cavities and an agricultural watershed decrease rapidly and the flow rate has increased by 25times, so the risk of ground subsidence increased.