• Title/Summary/Keyword: Grating optical low-pass filter

Search Result 4, Processing Time 0.018 seconds

The Characteristics of Computer-Generated Holographic Optical Low-Pass Filter (컴퓨터로 설계한 홀로그램 광 저대역 필터의 특성 분석)

  • 김인길;고춘수;임성우;오용호;이재철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1261-1267
    • /
    • 2003
  • Since the grating optical low-pass fillet degrades the resolution of images, we developed a hologram optical low-pass filter that show low degradation of the image and studied its characteristics. We designed the hologram that divides input beam into circular shaped 21 beams with a Monte-Carlo based hologram generation program and calculated its MTE characteristics to compare it with that of a grating filter. The hologram was manufactured through the optical lithography process and attached to a digital imaging device (Zoran 732212) for measurement. The moirfiltering is compared with zone plate images and the resolution loss is measured with USAF resolution chart. The hologram optical low-pass filter showed better characteristics in both moly filtering and resolution.

Spatial Frequency Filtering Characteristics of Annular Phase Gratings (고리형 위상 격자의 공간 주파수 필터 효과)

  • 김인길;고춘수;임성우;오용호;이재철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.994-1000
    • /
    • 2004
  • We studied the characteristics of annular phase gratings as spatial frequency filters. We first calculated the Fraunhofer diffraction patterns of annular gratings and then got the modulation transfer function (MTF) from the zeroth order Hankel transform of the intensity distribution function. Binaryphase annular grating shows higher diffraction efficiency than binary phase rectangular grating. But the MTF decreases linearly in the low-frequency region as that of rectangular grating does. The diffraction pattern of 4-phase annular grating is similar to that of 2-phase grating and hence MTFs of the two are much alike. For 8-phase annular grating, the 7th order diffracted beam is the lowest one next to the first. Consequently, the diffraction efficiency is very high and the MTF graph is curved upward. The diffracted beams except the first order are negligible and hence the MTF characteristics are more improved in the case of 16-phase grating. But the degree of improvement becomes lowered c(Impaled with 8-phase grating. We made a 16-phase annular grating and measured its MTF. The experimental result agrees well with the calculated one.

Composite Fracture Detection Capabilities of FBG Sensor and AE Sensor

  • Kim, Cheol-Hwan;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.152-157
    • /
    • 2014
  • Non-destructive testing methods of composite materials are very important for improving material reliability and safety. AE measurement is based on the detection of microscopic surface movements from stress waves in a material during the fracture process. The examination of AE is a useful tool for the sensitive detection and location of active damage in polymer and composite materials. FBG (Fiber Bragg Grating) sensors have attracted much interest owing to the important advantages of optical fiber sensing. Compared to conventional electronic sensors, fiber-optical sensors are known for their high resolution and high accuracy. Furthermore, they offer important advantages such as immunity to electromagnetic interference, and electrically passive operation. In this paper, the crack detection capability of AE (Acoustic Emission) measurement was compared with that of an FBG sensor under tensile testing and buckling test of composite materials. The AE signals of the PVDF sensor were measured and an AE signal analyzer, which had a low pass filter and a resonance filter, was designed and fabricated. Also, the wavelength variation of the FBG sensor was measured and its strain was calculated. Calculated strains were compared with those determined by finite element analysis.

A Study on The Multi-point Signal and It's Directivity detection of FBG Hydrophone Using Hopper WDM be in The Making (Hopper WDM을 이용한 FBG(Fiber Bragg Grating) 하이드로폰(Hydrophone)의 다중점신호검출 및 지향성 연구)

  • Kim, Kyung Bok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.156-163
    • /
    • 2015
  • In the using of FBG(Fiber Bragg Grating) developed in home land, we designed and manufactured united FBG acoustic transducers the first in Korea. they are being applied to multi-point signal detection of FBG Hydrophone used Hopper WDM(national patent NO 10-1502954) in the underwater. On united FBG transducers manufactured, we made an demonstrated on respective frequency response peculiarities in the underwater and analyzed the special characters. As the experimental result on frequency response peculiarities, we made it possible underwater acoustic detection on united FBG acoustic transducers type to maximum 30Hz~2.5KHz. it's the optimum conditions of 1.2KHz frequency in detection. And for the purpose of realization on multi-point signal detection on wide scope in the underwater, in the using of WDM(Wavelength Division Multiplexing) method and passive band-pass filter system, established arrays system and succeeded in multi-point underwater acoustic signal detection to the frequency 200Hz~1.3KHz out of the two united type FBG transducers. Additionally, it would be possible directivity detection for the object of its source as the intensity of detection signal varies with the sound source's direction and angle. From now on we prepared a new moment on the practical use study on FBG hydrophone in the future.