• Title/Summary/Keyword: Grass Silage Supplementation

Search Result 11, Processing Time 0.031 seconds

Effect of Grass Silage Supplementation on Performance in Lactating Cows Grazing on Pasture

  • Sung, K.I.;Okubo, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1409-1418
    • /
    • 2001
  • Two trials were carried out during two different grazing seasons to evaluate effect of grass silage supplementation, when amount of pasture is limited on dry matter intake (DMI), milk production, and gross energetic efficiency (GEE) of grazed lactating cows on a high forage-based diet. Fifty-one Holstein cows were randomly assigned to one of two dietary treatments: high pasture group or high silage group. In the spring flush, pasture and silage DMI, milk yield, milk fat percentage, and GEE were not different between the dietary groups. After the spring flush, pasture and silage DMI were higher for the high silage group than for the high pasture group. After the spring flush, although these were the higher total DMI of the high silage group than the high pasture group, milk yield was significantly (p<0.05) higher for the high pasture group than the high silage group. Milk fat percentage tended to be higher for the high silage group than the high pasture group. The GEE was significantly (p<0.05) higher for the high pasture group than the high silage group during after the spring flush. This study indicated that supplementation of grass silage, especially after the spring flush, can have a significant effect of increasing of forage intake and maintenance of the milk fat percentage; but not increase milk yield and GEE.

Effect of Replacing Rolled Corn with Potato Pulp Silage in Grass Silage-based Diets on Nitrogen Utilization by Steers

  • Aibibula, Y.;Okine, A.;Hanada, M.;Murata, S.;Okamoto, M.;Goto, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1215-1221
    • /
    • 2007
  • Three Holstein steers fitted with ruminal and duodenal cannulae were fed grass silage-based diets supplemented with potato pulp silage as a substitute for rolled corn at levels of 0%, 50% and 100% on a DM basis in a $3{\times}3$ Latin square design to investigate the effect of potato pulp silage on nitrogen (N) utilization in ruminants. Organic matter (OM) intake, and rumen and total tract digestibilities did not differ among treatment diets. Rumen and post-rumen starch digestibilities were similar among treatments, although starch intake decreased (p<0.01) with potato pulp supplementation. There were no significant differences (p>0.05) in ruminal N utilization and non-ammonia N supply to the duodenum of steers fed grass silage supplemented with potato pulp silage as a substitute for rolled corn. There were no treatment differences (p>0.05) in rumen pH, volatile fatty acid (VFA) concentration or the molar percentages of acetate and propionate. The ammonia-N concentration in rumen fluid tended to decrease (p<0.1) when rolled corn was substituted with potato pulp silage. Ether extract intake and post-ruminal digestibility significantly (p<0.01) decreased in steers fed diets containing potato pulp silage. Concentrations of total cholesterol and phospholipids in serum markedly decreased (p<0.01) with potato pulp silage supplementation without adversely affecting liver function. These data suggested that potato pulp silage has a similar value as rolled corn as an energy source for rumen microorganisms.

Diurnal Patterns in the Flow of Escapable Soluble Non-Ammonia Nitrogen Fractions in Omasal Digesta as Influenced by Barley and Rapeseed Meal Supplementation in Cows Fed Grass Silage Based Diet (목초 사일리지 급여 시 보리와 채종박 보충급여에 의한 제 3위 소화액내 Soluble Non-ammonia Nitrogen Fraction의 Flow 패턴 변화)

  • Choi, C.W.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.341-350
    • /
    • 2007
  • The present study was conducted to measure diurnal patterns in the flow of soluble non-ammonia nitrogen (SNAN) fractions in the liquid phase of digesta entering the omasum of cows fed grass-red clover silage supplemented with barley and rapeseed meal. Four ruminally cannulated cows were fed, in a 4×4 Latin square design, grass-red clover silage alone (GS) or supplemented with (on a DM basis) 6.0kg/d of barley grain, 2.1kg/d of rapeseed meal or 6.0kg/d of barley and 2.1kg/d rapeseed meal. Omasal digesta was taken using an omasal sampling system at 1.5h intervals during a 12h feeding cycle, and SNAN fractions (free AA, peptide and soluble protein) in the omasal digesta were assessed using ninhydrin assay. Dietary supplementation numerically increased the mean flow of SNAN fractions relative to GS diet despite the lack of statistical significance. Diurnal patterns in the flow of peptide entering the omasum during a 12h feeding cycle appeared to be highest immediately after feeding, declined by 10.0h post-feeding and slightly increased thereafter. In SNAN fractions, the flow of peptide was higher for supplemented diets than for GS diet throughout the feeding cycle. Based on the microbial contribution to total SNAN using 15N, diurnal patterns in the flow of dietary SNAN for dietary supplemented diets appeared to be higher compared with GS diets. Present results may conclude that peptide flow is quantitatively the most important N in SNAN fractions and that dietary supplementation can increase peptide flow entering the omasal canal.

Production, Nutritional Quality and In vitro Methane Production from Andropogon gayanus Grass Harvested at Different Maturities and Preserved as Hay or Silage

  • Ribeiro, G.O. Jr.;Teixeira, A.M.;Velasco, F.O.;Faria, W.G. Junior;Pereira, L.G.R.;Chaves, A.V.;Goncalves, L.C.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.330-341
    • /
    • 2014
  • Andropogon gayanus is an important grass due to its high biomass production, drought tolerance and favorable growth on low fertility acidic soils. Currently, there is little research on the impact of growth stage on the nutritional quality or the degree of $CH_4$ production that may arise from this forage during ruminal fermentation. The objectives of this study were to determine the effects of regrowth stage of A. gayanus on its chemical composition, in vitro production of gas and CH4, as well as in vitro dry matter (DM) digestibility when grown under tropical Brazilian conditions and conserved as hay or as silage. The nutritional value of A. gayanus grass declined with increasing maturity; however digestible DM yield linearly increased. After 112 d of regrowth, A. gayanus produced higher quality silage (higher lactate and lower pH and butyrate content) and higher DM yield. However, the low levels of crude protein at this time would make protein supplementation a necessity for proper rumen fermentation. No differences in $CH_4$ kinetic parameters were found with advancing maturity or preservation method (hay or silage).

The Effect of Addition of Grape Pomace on Chemical Composition and Quality of Silage (포도박 첨가가 사일리지의 화학적 성분과 발효품질에 미치는 영향)

  • 조익환;이주삼
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.3
    • /
    • pp.73-83
    • /
    • 2001
  • The qualities of the rice straw, black locust and orchardgrass silage added with grape pomace were investigated in this study and the amount of grape pomace added in different treatments were 0, 20, 40 and 50%, respectively. Crude protein contents of rice straw(6.5-10.6%) and orchardgrass silage(13.2-14.8%) added with grape pomace were significantly higher(p<0.05) than that of 100% rice straw(5.3%) and orchard grass silage(12.8%), however the crude protein contents(14.9-15.6%) of black locust silage in supplementation were lower than that of 100% black locust silage(16.3%). With higher amount of addition of grape pomade to rice straw, black locust and orchardgrass silages, ADF, NDF and crude ash contents decreased significantly(p<0.75). Moisture contents decreased according to the higher proportion of grape pomace in the rice straw silages, but increased according to the higher proportion of grape pomace in the black locust and orchardgrass silage. Values of pH in 20∼60% addition of grape pomace in rice straw(4.0∼4.2), black locust(4.1∼4.3) and orchardgrass silages(4.2∼4.4) were lower than that of 100% in rice straw(4.6), black locust(5.4) and orchardgrass silages(4.7). The contents of acetic acid and total volatile fatty acid significantly increased according to higher levels of addition of grape pomace compared to the respective values of silage. However the contents of lactic acid in supplementation of grape pomace were lower than that of 100% black locust silage.

  • PDF

Flow of Soluble Non-ammonia Nitrogen in the Liquid Phase of Digesta Entering the Omasum of Dairy Cows Given Grass Silage Based Diets

  • Choi, C.W.;Choi, C.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1460-1468
    • /
    • 2003
  • An experiment was conducted to quantify the flow of soluble non-ammonia nitrogen (SNAN) in the liquid phase of ruminal (RD) and omasal digesta (OD), and to investigate diurnal pattern in SNAN flow in OD. Five ruminally cannulated Finnish-Ayrshire dairy cows in a $5{\times}5$ Latin square design consumed a basal diet of grass silage and barley grain, and that supplemented with four protein feeds (kg/d DM basis) as follows: skimmed milk powder (2.1), wet distiller' solubles (3.0), untreated rapeseed meal (2.1) and treated rapeseed meal (2.1). Ruminal digesta was sampled using a vacuum pump, whereas OD was collected using an omasal sampling system at 1.0 h interval during a 12 h feeding cycle. Both RD and OD were acidified, centrifuged to remove microbes and precipitated with trichloroacetic acid followed by centrifugation. The SNAN fractions (free amino acid (AA), peptide and soluble protein) in RD and OD were assessed using ninhydrin assay. Free AA, peptide and soluble protein averaged 60.0, 89.4 and 2.1 g/d, respectively, for RD, and 81.8, 121.5 and 2.5 g/d, respectively, for OD. Although free AA flow was relatively high, mean peptide flow was quantitatively the most important fraction of SNAN, indicating that degradation of peptide to AA rather than hydrolysis of soluble protein to peptide or deamination may be the most limiting step in rumen proteolysis. Diurnal pattern in flow of peptide including free AA in OD during a 12 h feeding cycle peaked 1 h post-feeding, decreased by 3 h post-feeding and was relatively constant thereafter. Protein supplementation showed higher flow of peptide including free AA immediately after feeding compared with no supplemented diet. There were no differences among protein supplements in diurnal pattern in flow of peptide including free AA in OD.

EFFECT OF SUPPLEMENTARY UREA, GLUCOSE AND MINERALS ON THE IN VITRO DEGRADATION OF LOW QUALITY FEEDS

  • Oosting, S.J.;Verdonk, J.M.H.J.;Spinhoven, G.G.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.2 no.4
    • /
    • pp.583-590
    • /
    • 1989
  • Increasing levels of ammonia-N in the rumen fluid used for in vitro incubation were achieved by supplementation of the ration of the donor cows with urea and by addition of urea either with or without glucose to the rumen fluid after collection. The ration of the donor animals consisted of wheat straw (80%) and maize silage (20%). During the second half of the experiment the basal ration was supplemented with a mineral mixture. Wheat straw, Guinea grass and two rice straw varieties were incubated with the various kinds of rumen fluid. Parameters studied were: solubility, apparent organic matter disappearance after 48 hours of incubation ($OMD_{48}$), rate of organic matter degradation from 0 to 24 hours of incubation ($k_1$) and from 24 to 95 hours ($k_2$). The concentration of ammonia-N in the rumen fluid at which 95% of the maximal $OMD_{48}$ and k1 were reached (88.2 and 100.0 mg/l) were independent of the feed. With regard to the $k_2$ the required ammonia-N concentration to reach 95% of the maximal $k_2$ differed per feed. Mineral supplementation increased the OMD48 and $k_1$, but not the solubility and $k_2$. Glucose addition in combination with urea had no beneficial effect compared to urea supplementation alone.

Effects of Linseed Oil or Whole Linseed Supplementation on Performance and Milk Fatty Acid Composition of Lactating Dairy Cows

  • Suksombat, Wisitiporn;Thanh, Lam Phuoc;Meeprom, Chayapol;Mirattanaphrai, Rattakorn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.951-959
    • /
    • 2014
  • The objective of this study was to determine the effects of linseed oil or whole linseed supplementation on performance and milk fatty acid composition of lactating dairy cows. Thirty six Holstein Friesian crossbred lactating dairy cows were blocked by milking days first and then stratified random balanced for milk yields and body weight into three groups of 12 cows each. The treatments consisted of basal ration (53:47; forage:concentrate ratio, on a dry matter [DM] basis, respectively) supplemented with 300 g/d of palm oil as a positive control diet (PO), or supplemented with 300 g/d of linseed oil (LSO), or supplemented with 688 g/d of top-dressed whole linseed (WLS). All cows were received ad libitum grass silage and individually fed according to the treatments. The experiment lasted for 10 weeks including the first 2 weeks as the adjustment period, followed by 8 weeks of measurement period. The results showed that LSO and WLS supplementation had no effects on total dry matter intake, milk yield, milk composition, and live weight change; however, the animals fed WLS had higher crude protein (CP) intake than those fed PO and LSO (p<0.05). To compare with the control diet, dairy cow's diets supplemented with LSO and WLS significantly increased milk concentrations of cis-9,trans-11-conjugated linoleic acid (CLA) (p<0.05) and n-3 fatty acids (FA) (p<0.01), particularly, cis-9,12,15-C18:3, C20:5n-3 and C22:6n-3. Supplementing LSO and WLS induced a reduction of medium chain FA, especially, C12:0-C16:0 FA (p<0.05) while increasing the concentration of milk unsaturated fatty acids (UFA) (p<0.05). Milk FA proportions of n-3 FA remarkably increased whereas the ratio of n-6 to n-3 decreased in the cows supplemented with WLS as compared with those fed the control diet and LSO (p<0.01). In conclusion, supplementing dairy cows' diet based on grass silage with WLS had no effect on milk yield and milk composition; however, trans-9-C18:1, cis-9,trans-11-CLA, n-3 FA and UFA were increased while saturated FA were decreased by WLS supplementation. Therefore, it is recommended that the addition 300 g/d of oil from whole linseed should be used to lactating dairy cows' diets.

Milk Production, Milk Composition, Live Weight Change and Milk Fatty Acid Composition in Lactating Dairy Cows in Response to Whole Linseed Supplementation

  • Suksombat, Wisitiporn;Meeprom, Chayapol;Mirattanaphrai, Rattakorn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1111-1118
    • /
    • 2013
  • The objective of this study was to determine the effects of whole linseed supplementation on performances and milk fatty acid composition of dairy cows. Thirty six Holstein Friesian crossbred lactating dairy cows were blocked by milking days first and then stratified random balanced for milk yields and body weight into three groups of 12 cows each. The control group received 300 g of palm oil. The second group was supplemented with 344 g/d of top-dressed whole linseed plus 150 g of palm oil and the third group was supplemented with 688 g/d of top-dressed whole linseed. All cows also received ad libitum grass silage (Brachiaria ruziziensis), had free access to clean water and were individually housed in a free-stall unit and individually fed according to treatments. Residual feeds were collected on 2 consecutive days weekly and at the end of the experiment. Feed samples were pooled to make representative samples for proximate and detergent analyses. Daily milk yields were recorded. Milk samples were collected on 2 consecutive days weekly. Live weights were recorded at the start and at the end of the experiment. Milk samples were taken on d 56 of the experiment and subjected to milk fatty acid composition. The results showed no statistical significant differences in intakes, live weight change, milk yields and milk compositions, however, C18:1, C18:3 and unsaturated FAs were increased while saturated FAs were reduced by whole linseed supplementation. It is recommended that the addition of 300 g/d oil from whole linseed could be beneficial to lactating dairy cows in early lactation.

Effects of Trace Mineral Supplementation and Source, 30 Days Post-weaning and 28 Days Post Receiving, on Performance and Health of Feeder Cattle

  • Dorton, K.L.;Engle, T.E.;Enns, R.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1450-1454
    • /
    • 2006
  • Three hundred and seventy-five steers (approximately 7 mo of age and $239.0{\pm}10.4kg$) were utilized to determine the effects of trace mineral (TM) supplementation and source on performance during the on-farm backgrounding and feedlot receiving phases of beef cattle production. At their respective ranches, steers were stratified by body weight into six groups. Groups were then assigned to one of six pens and pens were randomly assigned to treatments. Treatments consisted of: 1) control (no supplemental Cu, Zn, Mn, and Co), 2) inorganic trace mineral ($CuSO_4$, $ZnSO_4$, $MnSO_4$, and $CoCO_3$), and 3) organic trace mineral (iso-amounts of organic Cu, Zn, Mn, and Co). Mineral treatments were fed in alfalfa pellets formulated to supply 360 mg of Zn, 200 mg of Mn, 125 mg of Cu, and 12.5 mg of Co per head per day from either organic or inorganic trace mineral sources. Control steers received alfalfa pellets with no additional Cu, Zn, Mn, or Co. Steers were allowed free access to harvested alfalfa-grass hay throughout the 30-d on-farm backgrounding phase. On day 30 post-weaning, steers were weighed and transported to the feedlot. Steers were blocked by treatment within ranch, stratified by initial body weight, and randomly assigned to one of 36 pens (9-12 head per pen; 12 pens per treatment). Steers remained on the same on-farm backgrounding trace mineral treatments, however, trace mineral treatments were included in the total mixed growing ration. Steers were fed a corn silage-based growing diet throughout the 28 d feedlot receiving period. There was no effect of TM supplementation on performance of steers during the on-farm backgrounding phase. By the end of the 28-d feedlot receiving phase, ADG was similar between control and trace mineral supplemented steers. Steers supplemented with organic TM had greater (p<0.05) ADG than steers supplemented with inorganic TM by the end of the 28-d feedlot receiving phase. Morbidity and mortality rates were similar across treatments.