• 제목/요약/키워드: Grasping Control

검색결과 213건 처리시간 0.037초

FUZZY POSITION/FORCE CONTROL OF MINIATURE GRIPPER DRVEN BY PIEZOELECTRIC BIMORPH ACTUATOR

  • Kim, Young-Chul;Chonan, Seiji;Jiang, Zhongwei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.24.2-27
    • /
    • 1996
  • This paper is a study on the fuzzy force control of a miniature gripper driven by piezoelectric bimorph actuator. The system is composed of two flexible cantilevers, a stepping motor, a laser displacement transducer and two semiconductor force sensors attached to the beams. Obtained results show that the present artificial finger system works well as a miniature gripper, which produces approximately 0.06N force in the maximum. Further, the fuzzy position/force control algorithm is applied to the soft-handing gripper for stable grasping of a object. It revealed that the fuzzy rule-based controller be efficient controller for the stable drive of the flexible miniature gripper. It also showed that two semiconductor strain gauges located in the flexible beam play an important roles for force control, position control and vibration suppression control.

  • PDF

다중센서를 이용한 로봇 손의 파지 제어

  • 이양희;서동수;박민용;이종원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.694-697
    • /
    • 1996
  • The aim of this work for 5 years from 1994 is to develop a multi-fingered robot hand and its control system for grasp and manipulation of objects dexterously. Since the robot hand is still being developed, a commercialized robot hand from Barrett Company is utilized to implement a hand controller and control algorithm. For this, VME based motion control and interface boards are developed and multi-sensors such as encoder, force/torque sensor, dynamic sensor and artificial skin sensor are partly developed and employed for the grasping control algorithm. In oder to handle uncertainties such as mechanical idleness and backlash, a fuzzy rule based grasping algorithm is also considered and tested with the developed control system.

  • PDF

로봇 그립퍼의 악력 제어 (Grasping power control of robot gripper)

  • 윤동우;오성남;김갑일;손영익;임승철;강환일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.315-317
    • /
    • 2006
  • In addition to accurate position and velocity control, force control is necessary for a successful robot operation. In this paper, we have designed a simple robot gripper using a DC motor. For its force control, a current feedback control law is presented without using additional force sensors. Experimental results prove the effectiveness of the proposed control law. A digital controller is also developed with a TMS320LF2406 processor.

  • PDF

다관절 핑거 로봇의 파지 운동 모델과 제어에 관한 연구 (A Study on Model and Control of Pinching Motion for Multi-Fingered Robot)

  • 엄혁;최종환;김용석;양순용;이진걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1060-1067
    • /
    • 2005
  • This paper attempts to derive and analyze the dynamic system of pinching a rigid object by means of two multi-degrees-of-freedom robot fingers with soft and deformable tips. It is shown firstly that a set of differential equation describing dynamics system of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It is shown secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this paper, the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the dynamic stable grasping of the dual fingers robot with soft tips.

  • PDF

적외선 소자 기반의 촉각센서를 가진 근전의수 개발 (Development of Myoelectric Hand with Infrared LED-based Tactile Sensor)

  • 정동현;추준욱;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제15권8호
    • /
    • pp.831-838
    • /
    • 2009
  • This paper proposes an IR (infrared) LED (Light Emitting Diode)-based tactile fingertip sensor that can independently measure the normal and tangential force between the hand and an object. The proposed IR LED-based tactile sensor has several advantages over other technologies, including a low price, small size, and good sensitivity. The design of the first prototype is described and some experiments are conducted to show output characteristics of the proposed sensor. Furthemore, the effectiveness of the proposed sensor is demonstrated through anti-slip control in a multifunction myoelectric hand, called the KNU Hand, which includes several novel mechanisms for improved grasping capabilities. The experimental results show that slippage was avoided by simple force control using feedback on the normal and tangential force from the proposed sensor. Thus, grasping force control was achieved without any slippage or damage to the object.

3축 손가락 힘센서를 가진 지능로봇의 지능형 로봇손 개발 (Development of Intelligent Robot's Hand with Three-Axis Finger Force Sensors for Intelligent Robot)

  • 김갑순;신희준
    • 제어로봇시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.300-305
    • /
    • 2009
  • This paper describes the intelligent robot's hand with three-axis finger force sensors for an intelligent robot. In order to grasp an unknown object safely, it should measure the mass of the object, and determine the grasping force using the mass, then control the robot's fingers with the grasping force. In this paper, the intelligent robot's hand for an intelligent robot was developed. First, the three-axis finger force sensors were designed and manufactured, second, the intelligent robot's hand with three-axis finger force sensors were designed and fabricated, third, the high-speed control system was designed and manufactured using DSP( digital signal processor), finally, the characteristic test to grasp an unknown object safely was carried out. It was confirmed that the developed intelligent robot's hand could grasp an unknown object safely.

소프트-팁이 장착된 듀얼-핑거의 안정적 파지 제어에 관한 연구 (A Study on Stable Grasping Control of Dual-fingers with Soft-Tips)

  • 심재군;한형용;양순용;이병룡;안경관;김성수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.219-224
    • /
    • 2002
  • This paper aims to derive a mathematical model of the dynamics of handling tasks in robot finger which stable grasping and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of area-contacts of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Thirdly, simulation results are shown and the effects of geometric constraints of area-contact is discussed. Finally, it is shown that even in the simplest case of dual single D.O.F manipulators there exists a sensory feedback from sensing data of the rotational angle of the object to command inputs to joint actuators and this feedback connection from sensing to action eventually realizes secure grasping of the object, provided that the object is of rectangular shape and motion is confined to a horizontal plane.

  • PDF

Device for Assisting Grasping Function (2nd Report : Maneuverability Evaluation)

  • Moromugi, S.;Okamoto, A.;Kim, S.H.;Tanaka, H.;Ishimatsu, T.;Koujina, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2665-2669
    • /
    • 2003
  • A wearable device to assist fingering function for disabled is developed in this study. This is the second paper to report the progress in development of this assisting device. The device is developed for a patient who suffers from cervical spinal cord injury. In the first paper, it was reported that the patient could successfully pick up several types of objects with his paralyzed fingers by using this device. As a next step, the maneuverability of the device under grasping operation is discussed in this paper. Maneuverability of the system is experimentally evaluated. The dexterity in controlling finger force is compared between the cases that non-disabled examinees operate their finger with inherent abilities and that a disabled examinee operates his finger by using the assisting device.

  • PDF

미지물체를 잡기 위한 로봇 손가락의 3축 힘감지센서 설계 및 제작 (Design and fabrication of robot′s finger 3-axis force sensor for grasping an unknown object)

  • 김갑순
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.229-232
    • /
    • 2002
  • This paper describes the development of robot's finger 3-axis force sensor that detects the Fx, Fy, and Fz simultaneously fur stably grasping an unknown object. In order to safely grasp an unknown object using the robot's fingers, they should detect the force of gripping direction and the force of gravity direction, and perform the force control using the detected farces. The 3-axis force sensor that detects the Fx, Fy, and Fz simultaneously should be used for accurately detecting the weight of an unknown object of gravity direction. Thus, in this paper, robot's finger for stably grasping an unknown object is developed. And, the 3-axis farce sensor that detects the Fx, Fy, and Fz simultaneously fur constructing a robot's finger is newly modeled using several parallel-plate beams, and is fabricated. Also, it is calibrated, and evaluated.

  • PDF

와이어 기반의 적응형 로봇 핸드 (Tendon-driven Adaptive Robot Hand)

  • 유홍선;김민철;송재복
    • 로봇학회논문지
    • /
    • 제9권4호
    • /
    • pp.258-263
    • /
    • 2014
  • An adaptive robot hand (AR-Hand) has a stable grasp of different objects in unstructured environments. In this study, we propose an AR-Hand based on a tendon-driven mechanism which consists of 4 fingers and 12 DOFs. It weighs 0.5 kg and can grasp an object up to 1 kg. This hand based on the adaptive grasp mechanism is able to provide a stable grasp without a complex control algorithm or sensor system. The fingers are driven by simple tendon structures with each finger capable of adaptively grasping the objects. This paper presents a method to decide the joint stiffness. The adaptive grasping is verified by various grasping experiments involving objects with different shapes and sizes.