• 제목/요약/키워드: Grasp Stiffness Control

검색결과 9건 처리시간 0.023초

가상 강성 모델에 기초한 파지 강성 해석 및 파지 제어 (Characterization and Control of Grasp Stiffness Based on Virtual Stiffness Model)

  • 최혁렬;정완균;염영일
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.128-138
    • /
    • 1996
  • Based on the virtual stiffness model, the stiffness of a grasped object is characterized. Differing from the previous investigations, the effect of grasp force on the stiffness of a grasp is formulated in terms of additional stiffness, which is called additional stiffness in this paper, and it is addressed how this term affects the stability of a grasp. In addition, a method of controlling the stiffness of a grasp is proposed and validated by experiments using a two-fingered robot hand.

  • PDF

로봇 손을 이용한 조립 작업의 컴플라이언스 특성 설정에 관한 연구:2차원 모델 (A Study on Specifying Compliance Characteristics for Assembly Tasks Using Robot Hands: Two Dimensional Model)

  • 김병호;오상록;이병주;서일홍
    • 제어로봇시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.1171-1177
    • /
    • 2001
  • This paper provides a guideline for specifying the operational compliance characteristics considering the location of compliance center and the grasp points in assembly tasks using robot hands. Through various assembly tasks, we analyze the conditions of the achievable operational stiffness matrix with respect to the location of compliance center and the grasp points. Also, we show that some of coupling stiffness elements in the operational space cannot be planned arbitrarily. As a result it is concluded that the location of compliance center on the grasped object and the grasp points play important roles for successful assembly tasks and also the operational stiffness matrix should be carefully specified by considering those conditions.

  • PDF

다지 손을 이용한 문자 쓰기 : 파지 모델링 및 컴플라이언스 특성 해석 (Character Writing Using Multi-Fingered Hands : Grasp Modeling and Compliance Analysis)

  • 김병호;여희주
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.927-932
    • /
    • 2001
  • When people write a character with a pen stably, proper compliance planning is necessary. In this paper, after investigating the property of character writing task, we propose a fundamental grasp model for character writing and also analyze compliance characteristics for effective character writing using multi-fingered hands. For this, the general stiffness relation of multi-fingered hand is firstly described. Next, we investigate the grasp configurations for grasping a pen and then, we analyze the conditions of the specified stiffness matrix in the operational space to successfully and more effectively achieve the given character writing task. Through the analysis, an effective grasp modeling for successful character writing is shown. And also, we conclude that the operational compliance characteristics should be properly planned for character writing, stably and precisely.

  • PDF

로봇 손을 이용한 2차원 조립 작업의 컴플라이언스 특성 설정 기준 (A Guideline for Specifying Compliance Characteristics of Two Dimensional Assembly Tasks using Robot Hands)

  • 김병호;오상록;이병주;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.78-78
    • /
    • 2000
  • This paper provides a guideline for specifying the operational compliance characteristics considering the location of compliance center and the grasp points in assembly tasks using robot hands, To be specific, some of coupling stiffness elements cannot be planned arbitrary. Through T-type assembly task, we analyze the conditions of the achievable operational stiffness matrix with respect to the location of compliance center and the grasp points. It is concluded that the location of compliance center on the grasped object and the grasp points play important roles for successful assembly tasks and also the operational stiffness matrix should be carefully specified by considering those conditions.

  • PDF

와이어 기반의 적응형 로봇 핸드 (Tendon-driven Adaptive Robot Hand)

  • 유홍선;김민철;송재복
    • 로봇학회논문지
    • /
    • 제9권4호
    • /
    • pp.258-263
    • /
    • 2014
  • An adaptive robot hand (AR-Hand) has a stable grasp of different objects in unstructured environments. In this study, we propose an AR-Hand based on a tendon-driven mechanism which consists of 4 fingers and 12 DOFs. It weighs 0.5 kg and can grasp an object up to 1 kg. This hand based on the adaptive grasp mechanism is able to provide a stable grasp without a complex control algorithm or sensor system. The fingers are driven by simple tendon structures with each finger capable of adaptively grasping the objects. This paper presents a method to decide the joint stiffness. The adaptive grasping is verified by various grasping experiments involving objects with different shapes and sizes.

순응형 파지와 정밀한 집기가 가능한 유연한 그리퍼의 강도 및 강성 분석 (Strength and Stiffness Analysis for a Flexible Gripper with Parallel Pinching and Compliant Grasping Capabilities)

  • 이덕원;전형석;정용준;김용재
    • 제어로봇시스템학회논문지
    • /
    • 제22권10호
    • /
    • pp.817-825
    • /
    • 2016
  • In this paper, we introduce a flexible gripper that we have engineered to precisely pinch in parallel and compliantly grasp objects. As found in most conventional industrial grippers, the parallel pinching property is essential for precise manipulation. On the other hand, the grippers with a flexible structure are more adept at grasping objects with arbitrary shapes and softness. To achieve these disparate properties, we introduce a flexible gripper mechanism composed of multiple flexible beam structures. Utilizing these beam structures, the proposed gripper is able to grasp arbitrarily shaped objects. Additionally, a unique combination of flexible beams enables the gripper to pinch objects using the parallel fingertips for enhanced precision. A detailed description of the proposed mechanism is provided, and an analysis of the strength and stiffness of the fingertip and finger body is presented. The Results section compares the theoretical and experimental analyses and verifies the properties and performance of the proposed gripper.

Device for Assisting Grasping Function

  • Jeong, Gu-Young;Yu, Kee-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.77.5-77
    • /
    • 2002
  • A mechanical device was developed for assisting the grasping function of a person whose fingers suffered cervical injury and thus are unable to grasp. This device is composed of a mechanical glove put on the user's hand and a muscle sensor to measure the activity of his or her muscle. The mechanical glove consists of a finger frame, a base and an air cylinder mounted on the base. With the kinematics carefully designed, the finger frame can achieve the grasping motion under the actuation of the air cylinder. For controlling this motion, an innovative sensor was developed to detect the user's motion intention. The sensor measures the change of the muscle stiffness...

  • PDF

소형 승용차의 파워트레인 마운트 Stop&Go 성능 적용을 위한 의사결정모델 (Decision Making Model for Powertrain Mount-Stop&Go Performance in a compact mobile)

  • 유정우;엄인섭;이홍철
    • 한국산학기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.967-976
    • /
    • 2012
  • 본 논문은 자동차 환경규제에 따른 CO2 감소 및 연비향상을 위하여 Stop&Go 기능을 적용한 소형 승용차에 대한 파워트레인 마운트 (Powertrain Mount) 의 진동 소음 최적화 방향을 제시하였다. 이를 위해 현재 "A" 차량에 적용중인 파워트레인 마운트 시스템을 분석한 후 다구찌 기법을 활용하여 파워트레인 마운트에 적용된 고무 동특성에 대한 다양한 변수를 제시하였고, 고무의 동특성 변수에 의해 만들어진 테스트 제품을 AHP(Analytic Hierarchy Process)기법을 적용하여 Stop&Go 기능에 적합한 진동 소음의 최적화 정도를 검증하였다. 이와 같은 시스템을 파워트레인 마운트의 초기 디자인 검증에 적용함으로써, 파워트레인 마운트의 고무 동특성에 대한 엔지니어링 노하우 (Engineering Know-How) 없이도 엔진의 움직임으로 야기되는 진동 소음의 문제점을 파악하고 이를 효과적으로 제어하는데 큰 역할을 할 것으로 예상된다.

Modeling and Analysis of SEIG-STATCOM Systems Based on the Magnitude-Phase Dynamic Method

  • Wang, Haifeng;Wu, Xinzhen;You, Rui;Li, Jia
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.944-953
    • /
    • 2018
  • This paper proposes an analysis method based on the magnitude-phase dynamic theory for isolated power systems with static synchronous compensators (STATCOMs). The stability margin of an isolated power system is greatly reduced when a load is connected, due to the disadvantageous features of the self-excited induction generators (SEIGs). To analyze the control process for system stability and to grasp the dynamic characteristics in different timescales, the relationships between the active/reactive components and the phase/magnitude of the STATCOM output voltage are derived in the natural reference frame based on the magnitude/phase dynamic theory. Then STATCOM equivalent mechanical models in both the voltage time scale and the current time scale are built. The proportional coefficients and the integral coefficients of the control process are converted into damping coefficients, inertia coefficients and stiffness coefficients so that analyzing its controls, dynamic response characteristics as well as impacts on the system operations are easier. The effectiveness of the proposed analysis method is verified by simulation and experimental results.