• Title/Summary/Keyword: Graphitic Carbon

Search Result 87, Processing Time 0.025 seconds

Graphene/Multi-Walled Carbon Nanotubes Hybrid Materials for Supercapacitors

  • Lee, Bo-Reum;Chang, Dong Wook
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2015
  • We have developed a versatile method for the preparation of chemically linked graphene/multi-walled carbon nanotubes (MWNTs) hybrid materials via simple acid-catalyzed dehydration reaction between graphene oxide (GO) and amine-functionalized MWNTs (af-MWNTs). In this condition, ketone (-C=O) groups in GO and primary amine (-NH2) moieties in af-MWNTs readily react to form imine (-C=N-) linkage. The chemical structures of graphene/MWNTs hybrid materials have been investigated using various microscopic and spectroscopic measurements. As a result of the synergetic effects of hybrid materials such as improved surface area and the superior structural restoration of graphitic networks, the hybrid materials demonstrate improved capacitance with excellent long-term stability. Furthermore, controlled experiments were conducted to optimize the weight ratio of graphene/MWNTs in hybrid materials. The highest capacitance of 132.4 F/g was obtained from the GM7.5 material, in which the weight ratio between graphene and MWNTs was adjusted to 7.5/1, in 1M KOH electrolyte at a scan rate of 100 mV/s.

Influence of Fluorine Doping on Hardness and Compressive Stress of the Diamond-Like Carbon Thin Film

  • Sayed Mohammad Adel Aghili;Raheleh Memarzadeh;Reza Bazargan Lari;Akbar Eshaghi
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.124-129
    • /
    • 2023
  • This study assessed the influences of fluorine introduced into DLC films on the structural and mechanical properties of the sample. In addition, the effects of the fluorine incorporation on the compressive stress in DLC films were investigated. For this purpose, fluorinated diamond-like carbon (F-DLC) films were deposited on cobalt-chromium-molybdenum substrates using radio-frequency plasma-enhanced chemical vapor. The coatings were examined by Raman scattering (RS), Attenuated total reflectance Fourier transform infrared spectroscopic analysis (ATR-FTIR), and a combination of elastic recoil detection analysis and Rutherford backscattering (ERDA-RBS). Nano-indentation tests were performed to measure hardness. Also, the residual stress of the films was calculated by the Stony equation. The ATR-FTIR analysis revealed that F was present in the amorphous matrix mainly as C-F and C-F2 groups. Based on Raman spectroscopy results, it was determined that F made the DLC films more graphitic. Additionally, it was shown that adding F into the DLC coating resulted in weaker mechanical properties and the F-DLC coating exhibited lower stress than DLC films. These effects were attributed to the replacement of strong C = C by feebler C-F bonds in the F-DLC films. F-doping decreased the hardness of the DLC from 11.5 to 8.8 GPa. In addition, with F addition, the compressive stress of the DLC sample decreased from 1 to 0.7 GPa.

Elucidating Electrochemical Energy Storage Performance of Unary, Binary, and Ternary Transition Metal Phosphates and their Composites with Carbonaceous Materials for Supercapacitor Applications

  • Muhammad Ramzan Abdul Karim;Waseem Shehzad;Khurram Imran Khan;Ehsan Ul Haq;Yousaf Haroon
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.321-344
    • /
    • 2024
  • Transition metal compounds (TMCs) are being researched as promising electrode materials for electrochemical energy storage devices (supercapacitors). Among TMCs, transition metal phosphates (TMPs) have good, layered structures owing to open framework and protonic exchange capability among different layers, good surface area due to engrossed porosity, rich active redox reaction sites owing to octahedral structure and variable valance metallic ions. Hence TMPs become more ideal for supercapacitor electrode materials compared to other TMCs. However, TMPs have got some issues like low conductivity, rate performance, stability, energy, and power densities. But these problems can be addressed by making their composites with carbonaceous materials, e.g., carbon nanotubes (CNTs), graphene oxide (GO), graphitic carbon (GC), etc. A few factors like high surface area, excellent electrical conductivity of carbon materials and variable valence metal ions in TMPs caused great enhancement in their electrochemical performance. This article tries to discuss and compare the published data, majorly in last decade, regarding the electrochemical energy storage potential of pristine unary, binary, and ternary TMPs and their hybrid composites with carbonaceous materials (CNTs, GOs/rGOs, GC, etc.). The electrochemical performance of the hybrids has been reported to be higher than the pristine counterparts. It is hoped that the current review will open a new gateway to study and explore the high performance TMPs based supercapacitor materials.

Fluorescence-Quenched Sensor for Trinitophenol in Aqueous Solution Based on Sulfur Doped Graphitic Carbon Nitride

  • Min, Kyeong Su;Manivannan, Ramalingam;Satheshkumar, Angu;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.63-69
    • /
    • 2018
  • In this study, we report on successful attempt towards the synthesis of sulfur self-doped $g-C_3N_4$ by directly heating thiourea in air. The synthesized materials were characterized using UV-vis spectral technique, FT-IR, XRD and TEM analysis. Further, the obtained material shows an excellent detection of carcinogenic TNP(Tri nitro phenol) in the presence of 10-fold excess of various other common interferences. The strong inner filter effect and molecular interactions(electrostatic, ${\pi}-{\pi}$, and hydrogen bonding interactions) between TNP and the $S-g-C_3N_4$ Nano sheets led to the fluorescence quenching of the $S-g-C_3N_4$ Nano sheets with an excellent selectivity and sensitivity towards TNP compared to that of other nitro aromatics under optimal conditions and the detection limit calculated was found to be 6.324 nM for TNP. The synthesized nanocomposite provides a promising platform for the development of sensors with improved reproducibility and stability for ultra-sensitive and selective sensing of TNP.

A Study on the Quality of Korean Anthracites (國産無煙炭의 炭質에 關한 考察)

  • Lee, Kae-Soo;Chung, Byung-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 1965
  • In an effort to make a comprehensive investigation of the quality of the Korean anthracite various analysis-proximate analysis, ultimate analysis, and other analysis of the samples picked up from some 40 collieries were conducted. It was found that the quality of the Korean anthracite was in ferion in general with the graphitic property by half. The important ingredient of Korean anthracite is as follows: $Moisture\;:\;4{\sim}7%,\;Ash\;:\;20{\sim}30%,\;Volatile matter:\;3{\sim}5%,\;Sulfur\;:\;0.2{\sim}0.5%,\;Carbon\;:\;62{\sim}73%,\;Hydrogen\;:\;0.3{\sim}1.0%,\;Nitrogen\;:\;0.2{\sim}0.5%,\;Oxygen\;:\;2.0{\sim}4.0%,\;Calorific\;value\;:\;5,200{\sim}6,100 cal/g$.

  • PDF

$TiO_2$-Ni inverse Catalyst for CRM Reactions with High Resistance to Coke Formation

  • Seo, Hyun-Ook;Sim, Jong-Ki;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.267-267
    • /
    • 2012
  • $TiO_2$-Ni inverse catalysts were prepared using atomic layer deposition (ALD) process and catalytic $CO_2$ reforming of methane (CRM) reaction over catalysts (either bare Ni or $TiO_2$ coated-Ni particles) were performed using a continuous flow reactor at $800^{\circ}C$. $TiO_2$-Ni inverse catalyst showed higher catalytic reactivity at initial stage of CRM reactions at $800^{\circ}C$ comparing to bare Ni catalysts. Moreover, catalytic activity of $TiO_2$/Ni catalyst was kept high during 13 hrs of the CRM reactions at $800^{\circ}C$, whereas deactivation of bare Ni surface was started within 1hr under same conditions. The results of surface analysis using SEM, XPS, and Raman showed that deposition of graphitic carbon was effectively suppressed in a presence of $TiO_2$ nanoparticles on Ni surface, thereby improving catalytic reactivity and stability of $TiO_2$/Ni catalytic systems. We suggest that utilizing decoration effect of metal catalyst with oxide nanoaprticles is of great potential to develop metal-based catalysts with high stability and reactivity.

  • PDF

Field-emission characteristics of carbon nanotubes: The effect of catalyst preparation (촉매처리 방법에 따른 탄소 나노튜브의 전계방출 특성)

  • Park, Chang-Kyun;Yun, Sung-Jun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.38-39
    • /
    • 2006
  • We present experimental results that regard the effects of catalyst preparation on the structural and field-emissive properties of CNTs. The CNTs used in this research have been synthesized using the inductively coupled plasma-chemical vapor deposition (ICP-CVD) method. Catalyst materials (such as Ni, Co, and Invar 426) are varied and deposited on buffer films by RF magnetron sputtering. Prior to growth of CNTs, $NH_3$ plasma etching has also been performed with varying plasma etching time and power. For all the CNTs grown, nanostructures and morphologies are analyzed using Raman spectroscopy and FESEM, in terms of buffer films, catalyst materials, and pre-treatment conditions. Furthermore, the field electron-emission of CNTs are measured and characterized in terms of the catalyst preparation environments. The CNTs grown on Nicatalyst layer would be more effectual for enhancing the growth rate and achieving the vertical-alignment of CNTs rather than other buffer materials from results of SEM study. The crystalline graphitic structure of CNTs is improved as the catalyst dot reaches a critical size. Also, the field-emission result shows that the CNTs using Ni catalyst would be more favorable for improving electron-emission capabilities of CNTs compared with other samples.

  • PDF

An Investigation of Interfacial Strength in Epoxy-based Solid Polymer Electrolytes for Structural Composite Batteries

  • Mohamad A. Raja;Su Hyun Lim;Doyun Jeon;Hyunsoo Hong;Inyeong Yang;Sanha Kim;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.416-421
    • /
    • 2023
  • Multifunctional composite materials capable of both load-carrying and energy functions are promising innovative candidates for the advancement of contemporary technologies owing to their relative feasibility, cost-effectiveness, and optimized performance. Carbon fiber (CF)-based structural batteries utilize the graphitic inherent structure to enable the employment of carbon fibers as electrodes, current collectors, and reinforcement, while the matrix system is an ion-conduction and load transfer medium. Although it is possible to enhance performance through the modification of constituents, there remains a need for a systematic design methodology scheme to streamline the commercialization of structural batteries. In this work, a bi-phasic epoxy-based ionic liquid (IL) modified structural battery electrolyte (SBE) was developed via thermally initiated phase separation. The polymer's morphological, mechanical, and electrochemical characteristics were studied. In addition, the interfacial shear strength (IFSS) between CF/SBE was investigated via microdroplet tests. The results accentuated the significance of considering IFSS and matrix plasticity in designing composite structural batteries. This approach is expected to lay the foundation for realizing smart structures with optimized performance while minimizing the need for extensive trial and error, by paving the way for a streamlined computational design scheme in the future.

Trend in Research and Application of Hard Carbon-based Thin Films (탄소계 경질 박막의 연구 및 산업 적용 동향)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

Enhanced Electrochemical CO2 Reduction on Porous Au Electrodes with g-C3N4 Integration (g-C3N4 도입에 따른 다공성 Au 전극의 전기화학적 이산화탄소 환원 특성)

  • Jiwon Heo;Chaewon Seong;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.78-84
    • /
    • 2024
  • The electrochemical reduction of carbon dioxide (CO2) is gaining attention as an effective method for converting CO2 into high-value carbon compounds. This paper reports a facile meth od for synth esizing and characterizing g-C3N4-modified porous Au (pAu) electrodes for electrochemical CO2 reduction using e-beam deposition and anodization techniques. The fabricated pAu@g-C3N4 electrode (@ -0.9 VRHE) demonstrated superior electrochemical performance compared to the pAu electrode. Both electrodes exhibited a Faradaic efficiency (FE) of 100% for CO production. The pAu@g-C3N4 electrode achieved a maximum CO production rate of 9.94 mg/s, which is up to 2.2 times higher than that of the pAu electrode. This study provides an economical and sustainable approach to addressing climate change caused by CO2 emissions and significantly contributes to the development of electrodes for electrochemical CO2 reduction.