DOI QR코드

DOI QR Code

Fluorescence-Quenched Sensor for Trinitophenol in Aqueous Solution Based on Sulfur Doped Graphitic Carbon Nitride

  • Min, Kyeong Su (Department of Advanced Organic Materials Engineering, Chungnam National University) ;
  • Manivannan, Ramalingam (Department of Advanced Organic Materials Engineering, Chungnam National University) ;
  • Satheshkumar, Angu (Department of Advanced Organic Materials Engineering, Chungnam National University) ;
  • Son, Young-A (Department of Advanced Organic Materials Engineering, Chungnam National University)
  • Received : 2018.04.13
  • Accepted : 2018.06.18
  • Published : 2018.06.27

Abstract

In this study, we report on successful attempt towards the synthesis of sulfur self-doped $g-C_3N_4$ by directly heating thiourea in air. The synthesized materials were characterized using UV-vis spectral technique, FT-IR, XRD and TEM analysis. Further, the obtained material shows an excellent detection of carcinogenic TNP(Tri nitro phenol) in the presence of 10-fold excess of various other common interferences. The strong inner filter effect and molecular interactions(electrostatic, ${\pi}-{\pi}$, and hydrogen bonding interactions) between TNP and the $S-g-C_3N_4$ Nano sheets led to the fluorescence quenching of the $S-g-C_3N_4$ Nano sheets with an excellent selectivity and sensitivity towards TNP compared to that of other nitro aromatics under optimal conditions and the detection limit calculated was found to be 6.324 nM for TNP. The synthesized nanocomposite provides a promising platform for the development of sensors with improved reproducibility and stability for ultra-sensitive and selective sensing of TNP.

Keywords

References

  1. P. Kovacic and R. Somanathan, Nitroaromatic Compounds: Environmental Toxicity, Carcinogenicity, Mutagenicity, Therapy and Mechanism, J. Appl. Toxicol, 34, 810 (2014). https://doi.org/10.1002/jat.2980
  2. G. He, H. Peng, T. Liu, M. Yang, Y. Zhang, andY. Fang, A Novel Picric Acid Film Sensor via Combination of the Surface Enrichment Effect of Chitosan Films and the Aggregation-induced Emission Effect of Siloles, J. Mater. Chem., 19, 7347 (2009). https://doi.org/10.1039/b906946a
  3. Y. Salinas, R. M. Manez, M. D. Marcos, F. Sancenon, A. M. Costero, M. Parra, and S. Gil, Optical Chemosensors and Reagents to Detect Explosives, Chem. Soc. Rev., 41, 1261 (2012). https://doi.org/10.1039/C1CS15173H
  4. S. W. Thomas III, G. D. Joly, and T. M. Swager, Chemical Wensors based on Amplifying Fluorescent Conjugated Polymers, Chem. Soc. Rev., 36, 1339 (2007).
  5. J. Xiao, L. Qiu, F. Ke, Y. Yuan, G. Xu, Y. Wang, and X. Jiang, Rapid Synthesis of Nanoscaleterbium-based Metal-organic Frameworks by a Combined Ultrasound Vapour Phase Diffusion Method for Highly Selective Sensing of Picric Acid, J. Mater. Chem. A, 1, 8745 (2013). https://doi.org/10.1039/c3ta11517h
  6. J. F. Wyman, M. P. Serve, D. W. Hobson, L. H. Lee, and D. E. Uddin, Acute Toxicity, Dis-tribution, and Metabolismof 2,4,6-trinitrophenol(picric acid) in Fischer Rats, J. Toxicol. Environ. Health, 37, 313 (1992). https://doi.org/10.1080/15287399209531672
  7. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, Metal-organic Framework Materials as Chemical Sensors, Chem. Rev., 112, 1105 (2012). https://doi.org/10.1021/cr200324t
  8. Y. Cui, Y. Yue, G. Qian, and B. Chen, Luminescent Functional Metal-organic Frameworks, Chem. Rev., 112, 1126 (2012). https://doi.org/10.1021/cr200101d
  9. H. Lin and K. S. Suslick, A Colorimetric Sensor Array for Detection of Triacetone Triperoxide Vapor, J. Am. Chem. Soc., 132, 15519 (2010). https://doi.org/10.1021/ja107419t
  10. D. Gao, Z. Wang, B. Liu, L. Ni, M. Wu, and Z. Zhang, Resonance Energy Transfer-amplifying Tluorescence Quenching at the Surface of Silica Nanoparticles toward Ultrasensitive Detection of TNT, Anal. Chem., 80, 8545 (2008). https://doi.org/10.1021/ac8014356
  11. S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee, and S. K. Ghosh, Highly Selective Detection of Nitro Explosives by a Luminescent Metal-organic Framework, Angew. Chem., 125, 2953 (2013). https://doi.org/10.1002/ange.201208885
  12. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, A Metalfree Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light, Nat. Mater., 8, 76 (2009). https://doi.org/10.1038/nmat2317
  13. Y. Wang, X. Wang, and M. Antonietti, Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: from Photochemistry to Multipurpose Catalysis to Sustainable Chemistry, Angew. Chem. Int. Edit., 51, 68 (2012). https://doi.org/10.1002/anie.201101182
  14. Y. Zhang, T. Mori, L. Niu, and J. Ye, Non-covalent Doping of Graphitic CarbonNitride Polymerwith Graphene: Controlled Electronic Structure and Enhanced Optoelectronic Conversion, Energ. Environ. Sci., 4, 4517 (2011). https://doi.org/10.1039/c1ee01400e
  15. J. Zhu, Y. Wei, W. Chen, Z. Zhao, and A. Thomas, Graphitic Carbon Nitride as a Metal-free Catalyst for NO Decomposition, Chem. Commun., 46, 6965 (2010). https://doi.org/10.1039/c0cc01432j
  16. F. Z. Su, S. C. Mathew, G. Lipner, X. Z. Fu, and M. Antonietti, $mpg-C_3N_4$-catalyzed Selective Oxidation of Alcohols using $O_2$ and Visible Light, J. Am. Chem. Soc., 132, 16299 (2010). https://doi.org/10.1021/ja102866p
  17. J. H. Sun, J. S. Zhang, M. W. Zhang, M. Antonietti, X. Z. Fu, and X. C. Wang, Bioinspired Hollow Semiconductor Nanospheres as Photosynthetic Nanoparticles, Nat. Commun., 3, 1139 (2012). https://doi.org/10.1038/ncomms2152
  18. L. L. Feng, Y. Zou, C. Li, S. Gao, L. J. Zhou, and Q. Sun, Nanoporous Sulfur-doped Graphitic Carbon Nitride Microrods: A Durable Catalyst for Visible-light-driven H2 Evolution, Int. J. Hydro Energy, 39, 15373 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.160
  19. L. Ge, C. Han, X. Xiao, L. Guo, and Y. Li, Enhanced Visible Light Photocatalytic Hydrogen Evolution of Sulfur-doped Polymeric $g-C_3N_4$ Photo Catalysts, Mater. Res. Bull., 48, 3919(2013). https://doi.org/10.1016/j.materresbull.2013.06.002
  20. C. Liu, H. Huang, X. Du, T. Zhang, N. Tian, Y. Guo, and Y. Zhang, In situ Co-crystallization for Fabrication of $g-C_3N_4/Bi_5O_7I$ Heterojunction for Enhanced Visiblelight Photo Catalysis, J. Phys. Chem. C, 119, 17156 (2015). https://doi.org/10.1021/acs.jpcc.5b03707
  21. H. J. Kong, D. H. Won, J. Kim, and S. I. Woo, Sulfurdoped $g-C_3N_4/BiVO_4$ Composite Photo Catalyst for Water Oxidation under Visible Light, Chem. Mater., 28, 1318 (2016). https://doi.org/10.1021/acs.chemmater.5b04178
  22. Y. P. Zhu, T. Z. Ren, and Z. Y. Yuan, Mesoporous Phosphorus-doped $g-C_3N_4$ Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance, ACS Appl. Mater. Interfaces., 7, 16850 (2015). https://doi.org/10.1021/acsami.5b04947
  23. Y. Yang, Y. Guo, F. Liu, X. Yuan, Y. Guo, S. Zhang, W. Guo, and M. Huo, Preparation and Enhanced Visible-light Photocatalytic Activity of Silver Deposited Graphitic Carbon Nitride Plasmonic Photo Catalyst, Appl. Catal. B, 142-143, 828 (2013). https://doi.org/10.1016/j.apcatb.2013.06.026
  24. R. C. Dante, P. M. Ramos, A. C. Guimaraes, and J. M. Gil, Synthesis of Graphitic Carbon Nitride by Reaction of Melamine and Uric Acid, Mater. Chem. Phys., 130, 1094 (2011). https://doi.org/10.1016/j.matchemphys.2011.08.041
  25. D. Foy, G. Demazeau, P. Florian, D. Massiot, C. Labrugere, and G. Goglio, Modulation of the Crystallinity of Hydrogenated Nitrogen-rich Graphitic Carbon Nitrides, J. Solid State Chem., 182, 165 (2009). https://doi.org/10.1016/j.jssc.2008.10.018
  26. K. Wanga, Q. Li, B. Liu, B. Cheng, W. Ho, and J. Yu, Sulfur-doped $g-C_3N_4$ with Enhanced Photocatalytic $CO_2$-reduction Performance, App. Catal. B, 176-177, 44 (2015). https://doi.org/10.1016/j.apcatb.2015.03.045
  27. G. G. Zhang, J. S. Zhang, M. W. Zhang, and X. C. Wang, Polycondensation of Thiourea into Carbon Nitride Semiconductors as Visible Light Photocatalysts, J. Mater. Chem., 22, 8083 (2012). https://doi.org/10.1039/c2jm00097k
  28. L. Ge, C. Han, X. Xiao, L. Guo, and Y. Li, Enhanced Visible Light Photocatalytic Hydrogen Evolution of Sulfur-doped Polymeric $g-C_3N_4$ Photocatalysts, Mater. Res. Bull., 48, 3919 (2013). https://doi.org/10.1016/j.materresbull.2013.06.002
  29. J. Xu, Y. J. Wang, andY. F. Zhu, Nanoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Performance, Langmuir, 29, 10566 (2013). https://doi.org/10.1021/la402268u