• Title/Summary/Keyword: Graphite particles

Search Result 145, Processing Time 0.027 seconds

습식 사이클론 내에서 고로슬러지의 분급 및 탈아연 거동 (Behaviour of Classification and Dezincification of Blast Furnace Sludge in Hydrocyclone)

  • 김태동;김성완
    • 자원리싸이클링
    • /
    • 제7권2호
    • /
    • pp.23-30
    • /
    • 1998
  • 제철소의 고로에서 발생하는 슬러지로부터 산화철 및 탄소분과 같은 유용 성분을 회수하여 리싸이클링하기 위하여 슬러지의 물리화학적 특성과 습식 사이클론을 이용한 분급특성을 조사형T다. 슬러지 입자의 크기에 따른 성분의 부존 상태를 조사한 결과, 탄소는 graphite 상으로 주로 굵은 입자에, 아연은 zinc sulfide로서 주로 미세한 입자에 분포하였다. 그러나 슬러지 중에 hematite 및 magnetite 상으로 존재하는 철분은 입경에 따른 편석이 없었다. 내경 75mm인 습식 사이클론에서 적정한 조건으로 고로슬러지를 분급하면 저아연 슬러지의 회수율과 탈아연율이 각 67.9~73.6% 및 72.7~86.8% 수준에 도달하였다.

  • PDF

국내산 흑연의 구형화에 미치는 로터 속도의 영향 (The Effect of Rotor Speed on the Circiuarity of Domestic Graphite)

  • 이준섭;임유진;유경근;박현규
    • 자원리싸이클링
    • /
    • 제31권6호
    • /
    • pp.66-72
    • /
    • 2022
  • 국내산 인상흑연정광의 리튬이온전지 소재로서 활용을 위해 고강도 혼합기를 이용하여 구형화 실험 후 건식분급을 진행하여 각 산물에 대한 구형화도와 입도를 분석하였다. 3,000 rpm의 로터속도에서는 정광시료와 산물의 입도와 구형화도의 차이가 관찰되지 않았으나, 로터속도를 6,000 rpm, 10,000 rpm 12,000 rpm으로 조절하여 구형화도 실험을 진행한 결과, 로터속도와 구동시간의 증가에 따라 구형화도는 증가하고 입도는 감소하였다. 로터속도 12,000 rpm에서 10분간 구동한 결과, 구형화도는 0.870으로부터 0.936까지 증가하였다. 구형화실험 후 건식분급을 진행하였을 때 조립자의 구형화도는 0.947까지 증가하였고 SEM 결과에서 구형입자가 확인되어 구형화가 성공적으로 이루어졌다고 판단되었다.

고분자 전해질막 수소 연료 전지 분리판 용 흑연/폴리프로필렌/액정고분자 복합 재료의 특성에 관한 연구 (Study on Graphite/Polypropylene/Liquid Crystalline Polymer Composite for a Bipolar Plate of Polymer Electrolyte Membrane Fuel Cell)

  • 비라즈 둔가나;손영곤
    • 한국산학기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.3627-3632
    • /
    • 2015
  • 고분자 전해질 막 연료전지의 분리판 용 흑연/폴리프로필렌(PP)/액정고분자 (LCP) 복합소재의 기계적, 유변학 특성 및 전기전도도에 관하여 연구하였다. 저분자량 PP를 바인더로 사용하는 경우 다른 열가소성 고분자와 비교하여 상당히 높은 전기 전도도를 보임을 확인하였는데 이는 점도가 낮은 PP에 의해 흑연 입자의 분산이 향상되어 나타난 결과임을 확인할 수 있었다. 또한 탄소나노튜브를 소량 첨가하면 복합재료의 전기전도도가 크게 증가하였고 산처리를 하여 산소 관능기를 포함한 탄소나노튜브를 첨가했을 때에는 전기전도도의 증가가 거의 없었다. 이로부터 탄소나노튜브는 비극성 고분자와 친화도가 높음을 알 수 있었다. 저분자량 PP를 바인더로 사용하였을 때는 복합재료의 점도가 사출성형이 가능할 정도로 낮은 것을 관찰할 수 있었다. 그러나 기계적인 강도는 다른 고분자에 비해 현저히 낮았다. 이를 보강하기 위하여 LCP를 혼합하여 복합재료를 제조한 결과 전반적인 물성 밸런스가 잘 맞는 복합재료를 얻을 수 있었다.

AN IMPROVED MONTE CARLO METHOD APPLIED TO THE HEAT CONDUCTION ANALYSIS OF A PEBBLE WITH DISPERSED FUEL PARTICLES

  • Song, Jae-Hoon;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.279-286
    • /
    • 2009
  • Improving over a previous study [1], this paper provides a Monte Carlo method for the heat conduction analysis of problems with complicated geometry (such as a pebble with dispersed fuel particles). The method is based on the theoretical results of asymptotic analysis of neutron transport equation. The improved method uses an appropriate boundary layer correction (with extrapolation thickness) and a scaling factor, rendering the problem more diffusive and thus obtaining a heat conduction solution. Monte Carlo results are obtained for the randomly distributed fuel particles of a pebble, providing realistic temperature distributions (showing the kernel and graphite-matrix temperatures distinctly). The volumetric analytic solution commonly used in the literature is shown to predict lower temperatures than those of the Monte Carlo results provided in this paper.

固體粉末이 浮上된 二相亂流 管流動의 熱傳達에 관한 硏究 (Study on the two phase turbulent heat transfer of gas-solid supension flow in pipes)

  • 김재웅;김봉기;최영돈
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.528-537
    • /
    • 1989
  • The objective of this paper is to investigate effects of the specific heat and the diameter of suspending particles on the heat transfer coefficient of two phase turbulent flow with suspension of solid particles in a circular tube with constant heat flux. Heat transfer coefficients of two phase turbulent flow in pipe with suspension of graphite powder were measured with variations of particle sizes and solid-gas loading ratio. Measured data were compared with predictions by numerical analysis in which the turbulece models are closed on the first order level. Results show that heat transfer coefficient increases with increasing the solid-gas loading ratio and the specific heat of suspending material, however, it decreases as the average diameter of particles decreases below $24{\mu}m$.

Synthesization of WC/Co Composite Powders Doped V and Cr by Mechanochemical Method

  • Im, Hoo-Soon;Hur, Jah-Mahn;Lee, Wan-Jae
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.646-647
    • /
    • 2006
  • Nano-sized WC particles in WC/Co composite powders were synthesized by mechanochemical method. The raw powders$(WO_3,\;Co_3O_4,\;VC,\;Cr_3C_2$ and graphite) were mixed by planetary milling for 30 hours. The compositions were WC-10 and -20 wt% Co added VC and $Cr_3C_2$. The direct reduction and carburization of the mixed powders were carried at $900\;^{\circ}C$ for 1 to 3 hours under flowing Ar gas. The mean size of WC particles in WC/Co composite powders was about 16 nm. The resultant powders were compacted and sintered at $1300{\sim}1360\;^{\circ}C$ for 0.5 hour. After sintering the mean size of WC particles was about 50 nm.

  • PDF

나노크기의 ZrO2와 Graphite 분말 혼합체의 열탄소환원법에 의한 고분산 초미립 ZrC 분말의 합성 (Facile Synthesis of Highly Dispersed Ultra-fine ZrC Powders by Carbothermal Reduction Method Using Nanosized ZrO2 and Nanosized Graphite Powder Mixtures)

  • 이화준;류성수
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.100-106
    • /
    • 2013
  • Ultra-fine zirconium carbide (ZrC) powder with nano-sized primary particles was synthesized by the carbothermal reduction method by using nano-sized $ZrO_2$ and nano-sized graphite powders mixture. The synthesized ZrC powder was well dispersed after simple milling process. After heat-treatment at $1500^{\circ}C$ for 2 h under vacuum, ultra-fine ZrC powder agglomerates (average size, $4.2{\mu}m$) were facilely obtained with rounded particle shape and particle size of ~200 nm. Ultra-fine ZrC powder with an average particle size of 316 nm was obtained after ball milling process in a planetary mill for 30 minutes from the agglomerated ZrC powder.

Electrochemical and Thermal Property Enhancement of Natural Graphite Electrodes via a Phosphorus and Nitrogen Incorporating Surface Treatment

  • Kim, Kyungbae;Kim, Han-Seul;Seo, Hyungeun;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • 제19권1호
    • /
    • pp.31-36
    • /
    • 2020
  • An efficient wet process approach to modifying natural graphite (NG) electrodes for Li-ion batteries is introduced in this paper. With homogeneous mixing and thermal decomposition of NG with diammonium phosphate ((NH4)2HPO4), phosphorus and nitrogen were successfully incorporated into the surface layer of NG particles. Electron microscopy and X-ray photoelectron spectroscopy analyses demonstrated that the surface was well modified by this process. As a result, the treated NG electrodes exhibited much improved electrochemical performance over pristine NG at two different temperatures: 25 ℃ and 50 ℃. Excellent capacity retention of 95.6% was obtained after 100 cycles at 50 ℃. These enhanced properties were confirmed in a morphology analysis on the cross-sections of the NG electrodes after galvanostatic cycling. The improved cycle and thermal stabilities can be attributed to the surface treatment with phosphorus and nitrogen; the treatment formed a stable solid electrolyte interphase layer that performed well when undergoing Li insertion and extraction cycling.

Multidimensional Conducting Agents for a High-Energy-Density Anode with SiO for Lithium-Ion Batteries

  • Lee, Suhyun;Go, Nakgyu;Ryu, Ji Heon;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.244-249
    • /
    • 2019
  • SiO has a high theoretical capacity as a promising anode material candidate for high-energy-density Li-ion batteries. However, its practical application is still not widely used because of the large volume change that occurs during cycling. In this report, an active material containing a mixture of SiO and graphite was used to improve the insufficient energy density of the conventional anode with the support of multidimensional conducting agents. To relieve the isolation of the active materials from volume changes of SiO/graphite electrode, two types of conducting agents, namely, 1-dimensional VGCF and 0-dimensional Super-P, were introduced. The combination of VGCF and Super-P conducting agents efficiently maintained electrical pathways among particles in the electrode during cycling. We found that the electrochemical performances of cycleability and rate capability were greatly improved by employing the conducting agent combinations of VGCF and Super-P compared with the electrode using only single VGCF or single Super-P. We investigated the detailed failure mechanisms by using systematic electrochemical analyses.

Neutronic design of pulsed neutron facility (PNF) for PGNAA studies of biological samples

  • Oh, Kyuhak
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.262-268
    • /
    • 2022
  • This paper introduces a novel concept of the pulsed neutron facility (PNF) for maximizing the production of the thermal neutrons and its application to medical use based on prompt gamma neutron activation analysis (PGNAA) using Monte Carlo simulations. The PNF consists of a compact D-T neutron generator, a graphite pile, and a detection system using Cadmium telluride (CdTe) detector arrays. The configuration of fuel pins in the graphite monolith and the design and materials for the moderating layer were studied to optimize the thermal neutron yields. Biological samples - normal and cancerous breast tissues - including chlorine, a trace element, were used to investigate the sensitivity of the characteristic γ-rays by neutron-trace material interactions and the detector responses of multiple particles. Around 90 % of neutrons emitted from a deuterium-tritium (D-T) neutron generator thermalized as they passed through the graphite stockpile. The thermal neutrons captured the chlorines in the samples, then the characteristic γ-rays with specific energy levels of 6.12, 7.80 and 8.58 MeV were emitted. Since the concentration of chlorine in the cancerous tissue is twice that in the normal tissue, the count ratio of the characteristic g-rays of the cancerous tissue over the normal tissue is approximately 2.