• Title/Summary/Keyword: Graphite layer

Search Result 239, Processing Time 0.022 seconds

Effects of the Superlattices on STM Imaging of Self-organized Substituted Alkyl Chain Monolayers on a Graphite Surface

  • Son, Seung Bae;Hahn, Jae Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4155-4160
    • /
    • 2012
  • We characterized the physisorption of p-iodo-phenyl octadecyl ether molecules (I-POE) onto superlattice regions of graphite surfaces using scanning tunneling microscopy (STM). The formation of self-organized I-POE monolayers does not affect the overall structures of moir$\acute{e}$ patterns and their modulation periods. However, the packing density of the I-POE monolayer and the orientations of lamella structures were sensitive to the underlying superlattice structure. Depending on the bias voltage, the STM images selectively showed moir$\acute{e}$ pattern, I-POE layer, or both. Reflecting the local density of states at a certain energy level, the STM images thereby revealed the relative energy level scale of the superlattice with respect to the molecular orbitals of I-POE.

An ionic liquid incorporated gel polymer electrolyte for double layer capacitors

  • Perera, Kumudu S.;Prasadini, K.W.;Vidanapathirana, Kamal P.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.21-34
    • /
    • 2020
  • Energy storage devices have received a keen interest throughout the world due to high power consumption. A large number of research activities are being conducted on electrochemical double layer capacitors (EDLCs) because of their high power density and higher energy density. In the present study, an EDLC was fabricated using natural graphite based electrodes and ionic liquid (IL) based gel polymer electrolyte (GPE). The IL based GPE was prepared using the IL, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (1E3MITF) with the polymer poly(vinyl chloride) (PVC) and the salt magnesium trifluoromethanesulfonate (Mg(CF3SO3)2 - MgTF). GPE was characterized by electrochemical impedance spectroscopy (EIS), DC polarization test, linear sweep voltammetry (LSV) test and cyclic voltammetry (CV) test. The maximum room temperature conductivity of the sample was 1.64 × 10-4 Scm-1. The electrolyte was purely an ionic conductor and the anionic contribution was prominent. Fabricated EDLC was characterized by EIS, CV and galvanostatic charge discharge (GCD) tests. CV test of the EDLC exhibits a single electrode specific capacitance of 1.44 Fg-1 initially and GCD test gives 0.83 Fg-1 as initial single electrode specific discharge capacitance. Moreover, a good stability was observed for prolonged cycling and the device can be used for applications with further modifications.

Pore properties and Microstructure on the each regions of a Light-Weight Aggregate using Glass Abrasive Sludge (유리연마슬러지를 사용한 경량골재의 미세구조 및 기공 특성)

  • Kwon, Choon-Woo;Chu, Yong-Sik;Kim, Young-Yup;Jung, Suk-Joe;Song, Hun;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.533-536
    • /
    • 2006
  • A light-weight aggregate with a surface layer was fabricated using glass abrasive sludge and expanding agents. The glass abrasive sludges were mixed with expanding agents ($Fe_2O_3,\;graphite,\;CaCO_3$) and formed into precursors. These precursors were sintered in the range of $700-900^{\circ}C$ for 20min. The sintered light-weight aggregate had a surface layer with smaller pores and an inner region with larger pores. The surface layer and pores controlled the water absorption ratio and physical properties. As the expanding agent fraction and the sintering temperature increased, the porosity and pore size increased. The light-weight aggregate with $Fe_2O_3$ and graphite as the expanding agents had a low water absorption ratio while the porous material with $CaCO_3$ as the expanding agent had a higher water absorption ratio and more open pores.

  • PDF

Analysis of electrochemical double-layer capacitors using a Natural Rubber-Zn based polymer electrolyte

  • Nanditha Rajapaksha;Kumudu S. Perera;Kamal P. Vidanapathirana
    • Advances in Energy Research
    • /
    • v.8 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • Electrochemical double-layer capacitors (EDLCs) based on solid polymer electrolytes (SPEs) have gained an immense recognition in the present world due to their unique properties. This study is about preparing and characterizing EDLCs using a natural rubber (NR) based SPE with natural graphite (NG) electrodes. NR electrolyte was consisted with 49% methyl grafted natural rubber (MG49) and zinc trifluoromethanesulfonate ((Zn(CF3SO3)2-ZnTF). It was characterized using electrochemical impedance spectroscopy (EIS) test, dc polarization test and linear sweep voltammetry (LSV) test. NG electrodes were made using a slurry of NG and acetone. EIS test, cyclic voltammetry (CV) test and galvanostatic charge discharge (GCD) test have been done to characterize the EDLC. Optimized electrolyte composition with NR: 0.6 ZnTF (weight basis) exhibited a conductivity of 0.6 x 10-4 Scm-1 at room temperature. Conductivity was predominantly due to ions. The electrochemical stability window was found to be from 0.25 V to 2.500 V. Electrolyte was sandwiched between two identical NG electrodes to fabricate an EDLC. Single electrode specific capacitance was about 2.26 Fg-1 whereas the single electrode discharge capacitance was about 1.17 Fg-1. The EDLC with this novel NR-ZnTF based SPE evidences its suitability to be used for different applications with further improvement.

Analysis of Electrochemical Properties of Sulfide All-Solid-State Lithium Ion Battery Anode Material Using Amorphous Carbon-Removed Graphite (비정질 탄소가 제거된 흑연을 이용한 황화물계 전고체 리튬이온전지 음극소재 전기화학적 특성 분석)

  • Choi, Jae Hong;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.58-63
    • /
    • 2022
  • Graphite has been used as an anode material for lithium-ion batteries for the past 30 years due to its low de-/lithiation voltage, high theoretical capacity of 372 mAh/g, low price, and long life properties. Recently, all-solid-state lithium-ion batteries (ASSLB), which are composed of inorganic solid materials with high stability, have received great attention as electric vehicles and next-generation energy storage devices, but research works on graphite that works well for ASSLB systems are insufficient. Therefore, we induced the performance improvement of ASSLB anode electrode graphite material by removing the amorphous carbon present in the carbon material surface, acting as a resistive layer from the graphite. As a result of X-ray diffraction (XRD) analysis using heat treated graphite in air at 400, 500, and 600 ℃, the full width at half maximum (FWHM) at (002) peak was reduced compared to that of bare graphite, indicating that the crystallinity of graphite was improved after heat treatment. In addition, the discharge capacity, initial coulombic efficiency (ICE) and cycle stability increased as the crystallinity of graphite increased after heat treatment. In the case of graphite annealed in air at 500 ℃, the high capacity retention rate of 331.1 mAh/g and ICE of 86.2% and capacity retention of 92.7% after 10-cycle measurement were shown.

Effect of Carbon-coated Silicon/Graphite Composite Anode on the Electrochemical Properties

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Byung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1965-1968
    • /
    • 2008
  • The effects of carbon-coated silicon/graphite (Si/Gr.) composite anode on the electrochemical properties were investigated. The nanosized silicon particle shows a good cycling performance with a reasonable value of the first reversible capacity as compared with microsized silicon particle. The carbon-coated silicon/graphite composite powders have been prepared by pyrolysis method under argon/10 wt% propylene gas flow at $700{^{\circ}C}$ for 7 h. Transmission electron microscopy (TEM) analysis indicates that the carbon layer thickness of 5 nm was coated uniformly onto the surface silicon powder. It is confirmed that the insertion of lithium ions change the crystalline silicon phase into the amorphous phase by X-ray diffraction (XRD) analysis. The carbon-coated composite silicon/graphite anode shows excellent cycling performance with a reversible value of 700 mAh/g. The superior electrochemical characteristics are attributed to the enhanced electronic conductivity and low volume change of silicon powder during cycling by carbon coating.

Reactions of Gas-Phase Atomic Hydrogen with Chemisorbed Hydrogen on a Graphite Surface

  • Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.635-646
    • /
    • 2007
  • The reaction of gas-phase hydrogen atoms H with H atoms chemisorbed on a graphite surface has been studied by the classical dynamics. The graphite surface is composed of the surface and 10 inner layers at various gas and surface temperatures (Tg, Ts). Three chains in the surface layer and 13 chains through the inner layers are considered to surround the adatom site. Four reaction pathways are found: H2 formation, H-H exchange, H desorption, and H adsorption. At (1500 K, 300 K), the probabilities of H2 formation and H desorption are 0.28 and 0.24, respectively, whereas those of the other two pathways are in the order of 10-2. Half the reaction energy deposits in the vibrational motion of H2, thus leading to a highly excited state. The majority of the H2 formation results from the chemisorption-type H(g)-surface interaction. Vibrational excitation is found to be strong for H2 formed on a cold surface (~10 K), exhibiting a pronounced vibrational population inversion. Over the temperature range (10-100 K, 10 K), the probabilities of H2 formation and H-H exchange vary from 0 to ~0.1, but the other two probabilities are in the order of 10-3.

High temperature Friction and Wear of Friction Material; The Effect of the Relative Amount of Graphite and Zirconium Silicate (ZrSiO$_4$) (흑연과 지르콘의 상대적 함량에 따른 마찰재의 고온 마찰 및 마모특성)

  • Kim, Seong-Jin;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.365-372
    • /
    • 2000
  • Tribological behavior of novolac resin-based friction materials with three different relative amounts of graphite and zirconium silicate was investigated by using a pad-on-disk type friction tester. The goal of this paper is to examine the effects of the relative amount of a lubricant and an abrasive in the automotive friction material on friction and wear characteristics at elevated temperature. Friction and wear of friction materials were affected by the existence of transfer film(3$\^$rd/ body layer) at friction interface and the composition of friction material, especially lubricant amount. The friction material with higher content of graphite indicated homogenized and durable transfer film, and resulted in stable friction coefficient regardless of the increase in friction heat. The experimental result also showed that the higher concentration of ZrSiO$_4$ in friction material aggravated friction stability and wear resistance due to the higher friction heat generated at fiction interface during high temperature friction test.

Expanded Graphite 산화물과 Co 자성 나노입자의 복합화에 관한 연구

  • Im, Hyeon-Jun;No, Il-Pyo;Gang, Myeong-Cheol;Yun, Seong-Uk;Sim, In-Bo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.240.2-240.2
    • /
    • 2011
  • 그라파이트 산화물(graphite oxide;G.O)는 그라파이트와는 다르게 물에서의 분산 능력이 뛰어나고 다양한 기판상에 단일 G.O layer를 형성할 수 있는 특성을 가지고 있으며, 유연(flexible)하고 투명(transparent)하기 때문에 다양한 전 자기 디바이스에 적용 가능하다. 특히, 최근 자성산화물 나노입자(magnetic oxide nanoparticles)에 대한 연구가 집중되고 있는데, 이러한 자성 나노입자와 G.O와의 복합체에 대한 연구는 다양한 분야로의 적용성에 대한 새로운 길을 열어주고 있다. 본 연구에서는 화학적 처리법을 적용하여 자성 나노입자(Co 나노입자)와 G.O 복합체를 제조하였다. Natural Graphite powder (N.G)에 $H_2O_4$ (98%) 및 $(NH_4)_2SO_4$를 적정 몰비로 첨가하여 반응 시킨 후 공기 중에서 열처리 공정을 수행하여 expanded graphite (E.G)를 제조 하였다. 열처리된 E.G를 $1,050^{\circ}C$ 온도에서 15~30초 및 30~60초 동안 공기 중에서 열처리 하여 expanded graphite oxide (E.G.O)를 제조하였으며, E.G.O와 $Co(acac)_3$의 화학적 반응을 통하여 Co 자성나노입자-G.O 복합체를 제조하였다. N.G, E.G, E.G.O 및 E.G.O+Co입자의 결정구조 분석을 위하여 XRD 측정을 수행하였으며, FTIR을 이용하여 각 단계에서의 반응성에 대한 연구를 수행하였다. 각 단계에서 표면 및 내부 미세구조 특성 분석을 위하여 SEM, TEM, 및 EDX 분석을 수행하였으며, E.G.O+Co 복합체의 자기적 특성 평가를 위하여VSM (vibrating sample magnetometer) 측정을 수행하였다. 이러한 연구 결과는 향후 자성나노입자와 그라핀과의 복합화를 위한 기저 기술로 활용가능하리라 판단된다.

  • PDF

Effects of Electrolytes in a Liquid Thin Layer System

  • Chung, Taek-Dong
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.216-220
    • /
    • 2002
  • The effects of electrolytes on electrochemical behavior from an oil thin layer interposed between a graphite electrode and an aqueous solution phase were examined. A hydrophobic electroactive species, tetrachloro-1,4-benzoquinone (TCQ), in a benzonitrile (EN) layer was employed to study ion transfer properties across the BN-water interface. Experimental results showed that hydrophobic cations as well as anions could be successfully used as ionic charge carriers. The addition of various salts into either the oil layers or the aqueous solutions offers deeper insight for the electrochemistry of the liquid thin layer system. When aqueous perchloric acid is interfaced with the BN films, the perchlorate ion of tetrahexylammonium perchlorate (THAP) substantially suppresses the dissociated proton concentration in the layer by the common ion effect while there is only a little change in the total acid concentration. Further approach by theoretical calculation makes it possible to quantitatively understand the effect of the electrolytes to the electrochemical responses of TCQ, which were previously reported (Anal. Chem. 73, 337 (2001)).