• Title/Summary/Keyword: Graphite layer

Search Result 238, Processing Time 0.028 seconds

Influence on EDM Surface with the Copper and Graphite Electrode According to the Discharge Energy (방전에너지에 따라 동전극과 흑연전극이 방전가공면에 미치는 영향)

  • Choi, Jae-Yong;Jeon, Eon-Chan;Jeong, Jae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.53-59
    • /
    • 1997
  • This study has been performed to inmvestigate MRR(metal removal rate), REW(relative electrode wear), surface roughness, heat transumutation layer and microhardness distribution in cross-section of the machined surface with various pulse-on duration and peak pulse current, using the copper and graphite electrode on the heat treated STD11 which is extensively used for metallic molding steel with the EDM. The results obtained are as follows; a) There exists critical pulse-on duration(If Ip equals 5A, .tau. on is 50 .mu. s) which shows the the maximum MRR in accordance with peak oulse current and the MRR decreases when the pulse-on duration exceeds the critical pulse-on during because of the abnormal electric discharge. b) Safe discharge is needed to make maximum of MRR and the metalic organization must be complicated for discharge induction. c) Graphite has much more benefits than copper electrode when rapid machining is done without electrode wear. d) The most external surface has the highest microhardness because of car- burizing from heat analysis of the dielectric fluid and the lower layar of the white covered layer has lower microhar dness than base matal because of softening.

  • PDF

A study on the characterization of electrode at graphite materials by impedance spectroscopy (임피던스를 이용한 흑연재료의 전극특성에 관한 연구)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.571-583
    • /
    • 1996
  • The electrochemical behavior on electrographite and graphite foil electrode with porous surface in 0.5 M $K_{2}SO_{4}$ solution with 1 mM $[Fe(CN)_{6}]^{3-}/[Fe(CN)_{6}]^{4-}$ have been characterized by impedance spectroscopy. In cyclic voltammograms, relative high current according to structure of porous surface for graphite materials was represented, and indicated hgih double layer capacitance on graphite foil. The faraday-impedance and the change of impedance spectrum on both graphite materials were not remarkable during polarization by reaction of field transport. Chemical adsorption was represented on electrographite and was depended highly at anodic polarization.

  • PDF

Monitoring of the Transfer of Tetrachloroaurate(III) Ions by Thin-layer Electrochemistry and Electrochemical Deposition of Metallic Gold over a Graphite Electrode

  • Song, Ji-Seon;Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1983-1987
    • /
    • 2008
  • This study demonstrates the electrochemical conversion of the synthetic procedure of monolayer-protected clusters using a thin toluene layer over an edge plane pyrolytic graphite electrode. A thin toluene layer with a thickness of 0.31 mm was coated over the electrode and an immiscible liquid/liquid water/toluene interface was introduced. The transfer of the tetrachloroaurate ($AuCl_4^-$) ions into the toluene layer interposed between the aqueous solution and the electrode surface was electrochemically monitored. The $AuCl_4^-$ ions initially could not move through into the toluene layer, showing no reduction wave, but, in the presence of the phase transfer reagent, tetraoctylammonium bromide (TOABr), a cathodic wave at 0.23 V vs. Ag/AgCl was observed, indicating the reduction of the transferred $AuCl_4^-$ ions in the toluene layer. In the presence of dodecanethiol together with TOABr, a self-assembled monolayer was formed over the electro-deposited metallic gold surface. The E-SEM image of the surface indicates the formation of a highly porous metallic gold surface, rather than individual nanoparticles, over the EPG electrode.

Study on the Surface Reactions of Graphite Electrodes by Anodic Polarization (양극분극에 의한 흑연전극의 계면반응에 대한 연구)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • Electrode surface reaction on three carbon materials(glassy carbon, synthesized graphite, graphite foil) in 0.5 M K2SO4 electrolyte is investigated by impedance spectroscopy during anodic polarization. The double layer capacitance of the graphite foil electrode is relatively higher than that of other two materials. The change of capacitance parameter C due to chemical adsorption on glassy carbon and synthesized graphite(PVDF graphite) is observed in 0.5 M K2SO4 solution at anodic polarization. In general, the faradic impedance on glassy carbon depends on anodic polarization, and the change of impedance parameter on graphite foil at anodic polarization is not remarkable, because this reaction is controlled by field transport.

  • PDF

Interfacial Microstructure of Diffusion-Bonded W-25Re/Ti/Graphite Joint and Its High-Temperature Stability (확산 접합에 의해 제조된 텅스텐-레늄 합금/티타늄/그래파이트 접합체의 미세구조 및 고온 안정성)

  • Kim, Joo-Hyung;Baek, Chang Yeon;Kim, Dong Seok;Lim, Seong Taek;Kim, Do Kyung
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.751-756
    • /
    • 2016
  • Graphite was diffusion-bonded by hot-pressing to W-25Re alloy using a Ti interlayer. For the joining, a uniaxial pressure of 25 MPa was applied at $1600^{\circ}C$ for 2 hrs in an argon atmosphere with a heating rate of $10^{\circ}C\;min^{-1}$. The interfacial microstructure and elemental distribution of the W-25Re/Ti/Graphite joints were analyzed by scanning electron microscopy (SEM). Hot-pressed joints appeared to form a stable interlayer without any micro-cracking, pores, or defects. To investigate the high-temperature stability of the W-25Re/Ti/Graphite joint, an oxy-acetylene torch test was conducted for 30 seconds with oxygen and acetylene at a 1.3:1 ratio. Cross-sectional analysis of the joint was performed to compare the thickness of the oxide layer and its chemical composition. The thickness of W-25Re changed from 250 to $20{\mu}m$. In the elemental analysis, a high fraction of rhenium was detected at the surface oxidation layer of W-25Re, while the W-25Re matrix was found to maintain the initial weight ratio. Tungsten was first reacted with oxygen at a torch temperature over $2500^{\circ}C$ to form a tungsten oxide layer on the surface of W-25Re. Then, the remaining rhenium was subsequently reacted with oxygen to form rhenium oxide. The interfacial microstructure of the Ti-containing interlayer was stable after the torch test at a temperature over $2500^{\circ}C$.

Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate (그래핀이 코팅된 스테인리스강의 고분자전해질 연료전지 분리판 적용을 위한 표면 특성)

  • Lee, Su-Hyung;Kim, Jung-Soo;Kang, Nam-Hyun;Jo, Hyung-Ho;Nam, Dae-Guen
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.226-231
    • /
    • 2011
  • Graphene was coated on STS 316L by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite (graphene) was made of the graphite by chemical treatment. Graphene is distributed using dispersing agent, and STS 316L was coated with diffuse graphene solution by electro spray coating method. The structure of the exfoliated graphite was analyzed using XRD and the coating layer of surface was analyzed by using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed into fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3~5 ${\mu}m$ thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the PEM fuel cell stack inside. And interfacial contact resistance test was measured to simulate the internal operating conditions of PEM fuel cell stack. The results of measurements show that stainless steel coated with graphene was improved in corrosion resistance and surface contact resistance than stainless steel without graphene coating layer.

Study for Frictional Characteristics of graphite lubricants in hot. warm forging (열ㆍ온간 단조에서 그라파이트 윤활제의 마찰 특성에 대한 연구)

  • ;;T.A. Dean
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.29-37
    • /
    • 2000
  • At present there are many theories as to how various lubricants used in forging perform the role of reducing friction. Little work has been carried out to determine the validity of these theories for solid lubricants. This paper covers the development and preliminary results of the experiments devised to illustrate the movement of graphite at the workpiece/tool interface in the work forging temperature range. The paper describes the results obtained from upsetting of rings between two flat dies for measurement of lubricant thickness and compaction of graphite for density-pressure relationship. These allowed the lubricant to be exposed to forging conditions and by applying the principles of Male's ring test the simple generation of a value fur friction factor could also be determined. The experiments have been undertaken to examine the behavior of lubricant for shot blasted surface and change of surface roughness. A simple computer model of the interface has been constructed characterizing the graphite layer in an attempt to simulate the boundary mechanics.

  • PDF

Evaluation of fiber-reinforced bipolar plate for PEM fuel cell (PEM 연료전지용 섬유강화 분리판의 특성 평가)

  • Lee, Hee-Sub;Kim, Sung-Geun;Ahn, Sung-Hoon;Jeon, Ui-Sik;Ahn, Sang-Yeoul;Ahn, Byung-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.554-557
    • /
    • 2005
  • The bipolar plate is a major component of the PEM fuel cell stack, which takes a large portion of stack cost. In this study, as alternative materials for bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity. To achieve desired electric properties, specimens made with different mixing ratio, processing pressure and temperature were tested. To increase mechanical strength, one or two layer of woven carbon fabric were added to the original graphite and resin composite. Thus, the composite material is consisted of the three phases: graphite particles, epoxy resin, and carbon fabric. By increasing mixing ratio, fabricated pressure and process temperature, electric conductivity was improved. The results of tensile test showed that the tensile strength of two-phase graphite composite was about 5MPa, and that of three-phase composite was increased to 54MPa.

  • PDF

Role of Charge Produced by the Gas Activation in the CVD Diamond Process

  • Hwang, Nong-Moon;Park, Hwang-Kyoon;Suk Joong L. Kang
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 1997
  • Charged carbon clusters which are formed by the gas activation are suggested to be responsible for the formation of the metastable diamond film. The number of carbon atoms in the cluster that can reverse the stability between diamond and graphite by the capillary effect increases sensitively with increasing the surface energy ratio of graphite to diamond. The gas activation process produces charges such as electrons and ions, which are energetically the strong heterogeneous nucleation sites for the supersaturated carbon vapor, leading to the formation of the charged clusters. Once the carbon clusters are charged, the surface energy of diamond can be reduced by the electrical double layer while that of graphite cannot because diamond is dielectric and graphite is conducting. The unusual phenomena observed in the chemical vapor deposition diamond process can be successfully approached by the charged cluster model. These phenomena include the diamond deposition with the simultaneous graphite etching, which is known as the thermodynamic paradox and the preferential formation of diamond on the convex edge, which is against the well-established concept of the heterogeneous nucleation.

  • PDF

$\beta$-SiC Formation Mechanisms in Si Melt-C-SiC System (용융 Si-C-SiC계에서 $\beta$-SiC 생성기구)

  • 서기식;박상환;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.655-661
    • /
    • 1999
  • ${\beta}$-SiC formation mechanism in Si melt-C-SiC system with varying in size of carbon source was investigated. A continuous reaction sintering process using Si melt infiltration method was adopted to control the reaction sintering time effectively. It was found that ${\beta}$-SiC formation mechanism in Si melt-C-SiC system was directly affected by the size of carbon source. In the Si melt-C-SiC system with large carbon source ${\beta}$-SiC formation mechanism could be divided into two stages depending on the reaction sintering time: in early stage of reaction sintering carbon dissolution in Si melt and precipitation of ${\beta}$-SiC was occurred preferentially and then SIC nucleation and growth was controlled by diffusion of carbon throughy the ${\beta}$-SiC layer formed on graphite particle. Furthmore a dissolution rate of graphite particles in Si melt could be accelerated by the infiltration of Si melt through basal plane of graphite crystalline.

  • PDF